TY - JOUR
T1 - IL-6 and TGF-α costimulate mesenchymal stem cell vascular endothelial growth factor production by ERK-, JNK-, and PI3K-mediated mechanisms
AU - Herrmann, Jeremy L.
AU - Weil, Brent R.
AU - Abarbanell, Aaron M.
AU - Wang, Yue
AU - Poynter, Jeffrey A.
AU - Manukyan, Mariuxi C.
AU - Meldrum, Daniel R.
PY - 2011/5
Y1 - 2011/5
N2 - Mesenchymal stem cells (MSCs) protect ischemic tissues in part through paracrine growth factor production. IL-6, which is upregulated in the heart during ischemia, has been shown to enhance stem cell proliferation and migration. The effect of IL-6 on MSC paracrine function, however, remains unknown. In addition, TGF-α increases MSC vascular endothelial growth factor (VEGF) production and may share downstream signaling pathways with IL-6 involving ERK, JNK, and PI3K. We hypothesize that cotreatment with IL-6 and TGF-α will result in greater MSC VEGF production than by either treatment alone via these signaling pathways. Murine MSCs were treated with IL-6 (0.05 ng/mL) with or without TGF-α (250 ng/mL) and in combination with inhibitors of ERKI/II, JNK, and PI3K for 24 h. Vascular endothelial growth factor concentrations in the supernatants were measured using enzyme-linked immunosorbent assay. Phosphorylation of ERK, JNK, and PI3K was measured using Western blot analysis. IL-6 increased MSC VEGF production at a dose of 0.05 ng/mL, and the combination of IL-6 and TGF-α (250 ng/mL) increased VEGF production to a greater extent than IL-6 or TGF-α alone. IL-6 induced phosphorylation of ERK, JNK, and PI3K, and inhibition of each suppressed IL-6-induced VEGF production. TGF-α cotreatment overcame VEGF suppression after ERK2 inhibition but not ERK1, JNK, or PI3K. These data suggest that IL-6 stimulates MSC VEGF production alone and additively with TGF-α via ERK-, JNK-, and PI3K-mediated mechanisms. IL-6 and TGF-α cotreatment may be a useful strategy for enhancing MSC VEGF production and cardioprotection during myocardial ischemia.
AB - Mesenchymal stem cells (MSCs) protect ischemic tissues in part through paracrine growth factor production. IL-6, which is upregulated in the heart during ischemia, has been shown to enhance stem cell proliferation and migration. The effect of IL-6 on MSC paracrine function, however, remains unknown. In addition, TGF-α increases MSC vascular endothelial growth factor (VEGF) production and may share downstream signaling pathways with IL-6 involving ERK, JNK, and PI3K. We hypothesize that cotreatment with IL-6 and TGF-α will result in greater MSC VEGF production than by either treatment alone via these signaling pathways. Murine MSCs were treated with IL-6 (0.05 ng/mL) with or without TGF-α (250 ng/mL) and in combination with inhibitors of ERKI/II, JNK, and PI3K for 24 h. Vascular endothelial growth factor concentrations in the supernatants were measured using enzyme-linked immunosorbent assay. Phosphorylation of ERK, JNK, and PI3K was measured using Western blot analysis. IL-6 increased MSC VEGF production at a dose of 0.05 ng/mL, and the combination of IL-6 and TGF-α (250 ng/mL) increased VEGF production to a greater extent than IL-6 or TGF-α alone. IL-6 induced phosphorylation of ERK, JNK, and PI3K, and inhibition of each suppressed IL-6-induced VEGF production. TGF-α cotreatment overcame VEGF suppression after ERK2 inhibition but not ERK1, JNK, or PI3K. These data suggest that IL-6 stimulates MSC VEGF production alone and additively with TGF-α via ERK-, JNK-, and PI3K-mediated mechanisms. IL-6 and TGF-α cotreatment may be a useful strategy for enhancing MSC VEGF production and cardioprotection during myocardial ischemia.
KW - Paracrine
KW - cytokines
KW - growth factors
KW - inflammation
KW - pretreatment
UR - http://www.scopus.com/inward/record.url?scp=79955545447&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955545447&partnerID=8YFLogxK
U2 - 10.1097/SHK.0b013e31820b2fb9
DO - 10.1097/SHK.0b013e31820b2fb9
M3 - Article
C2 - 21263382
AN - SCOPUS:79955545447
SN - 1073-2322
VL - 35
SP - 512
EP - 516
JO - Shock
JF - Shock
IS - 5
ER -