IFNa augments clinical efficacy of regulatory T-cell depletion with denileukin diftitox in ovarian cancer

Suzanne R. Thibodeaux, Brian B. Barnett, Srilakshmi Pandeswara, Shawna R. Wall, Vincent Hurez, Vinh Dao, Lishi Sun, Benjamin J Daniel, Michael J. Brumlik, Justin Drerup, Álvaro Padrón, Teresa Whiteside, Ilona Kryczek, Weiping Zou, Tyler J. Curiel

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: Immunotherapy treats some cancers, but not ovarian cancer. Regulatory T cells (Tregs) impede anti-ovarian cancer immunity but effective human Treg-directed treatments are lacking. We tested Treg depletion with denileukin diftitox (DD) ± IFNa as ovarian cancer immunotherapy. Patients and Methods: Mice with syngeneic ID8 ovarian cancer challenge were treated with DD, IFNa, or both. The phase 0/I trial tested one dose-escalated DD infusion for functional Treg reduction, safety, and tolerability. The phase II trial added IFNa2a to DD if DD alone failed clinically. Results: DD depleted Tregs, and improved antitumor immunity and survival in mice. IFNa significantly improved antitumor immunity and survival with DD. IFNa did not alter Treg numbers or function but boosted tumor-specific immunity and reduced tumor Treg function with DD by inducing dendritic cell IL6. DD alone was well tolerated, depleted functional blood Tregs and improved immunity in patients with various malignancies in phase 0/I. A patient with ovarian cancer in phase 0/I experienced partial clinical response prompting a phase II ovarian cancer trial, but DD alone failed phase II. Another phase II trial added pegylated IFNa2a to failed DD, producing immunologic and clinical benefit in two of two patients before a DD shortage halt. DD alone was well tolerated. Adding IFNa increased toxicities but was tolerable, and reduced human Treg numbers in blood, and function through dendritic cell–induced IL6 in vitro. Conclusions: Treg depletion is clinically useful but unlikely alone to cure ovarian cancer. Rational treatment agent combinations can salvage clinical failure of Treg depletion alone, even when neither single agent provides meaningful clinical benefit.

Original languageEnglish (US)
Pages (from-to)3661-3673
Number of pages13
JournalClinical Cancer Research
Volume27
Issue number13
DOIs
StatePublished - Jul 1 2021

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'IFNa augments clinical efficacy of regulatory T-cell depletion with denileukin diftitox in ovarian cancer'. Together they form a unique fingerprint.

Cite this