TY - JOUR
T1 - Identification of osteocyte-selective proteins
AU - Guo, Dayong
AU - Keightley, Andrew
AU - Guthrie, Jill
AU - Veno, Patricia A.
AU - Harris, Stephen E.
AU - Bonewald, Lynda F.
PY - 2010/10
Y1 - 2010/10
N2 - Since little is known regarding osteocytes, cells embedded within the mineralized bone matrix, a proteomics approach was used to discover proteins more highly expressed in osteocytes than in osteoblasts to determine osteocyte-specific function. Two proteomic profiles obtained by two different proteomic approaches using total cell lysates from the osteocyte cell line MLO-Y4 and the osteoblast cell line MC3T3 revealed unique differences. Three protein clusters, one related to glycolysis (Phosphoglycerate kinase 1, fructosebisphosphate aldolase A, hypoxia up-regulated 1 [ORP150], triosephosphate isomerase), one to protein folding (Mitochondrial Stress-70 protein, ORP150, Endoplasmin), and one to actin cytoskeleton regulation (Macrophage-capping protein [CapG], destrin, forms of lamin A and vimentin) were identified. Higher protein expression of ORP-150, Cap G, and destrin in MLO-Y4 cells compared with MC3T3 cells was validated by gene expression, Western blotting, and in vivo expression. These proteins were shown to be selective in osteocytes in vivo using immuno-staining of mouse ulnae. Destrin was most highly expressed in embedding osteoid osteocytes, GapG in embedded osteocytes, and ORP150 in deeply embedded osteocytes. In summary, the proteomic approach has yielded important information regarding molecular mechanisms used by osteocytes for embedding in matrix, the formation of dendritic processes, and protection within a hypoxic environment.
AB - Since little is known regarding osteocytes, cells embedded within the mineralized bone matrix, a proteomics approach was used to discover proteins more highly expressed in osteocytes than in osteoblasts to determine osteocyte-specific function. Two proteomic profiles obtained by two different proteomic approaches using total cell lysates from the osteocyte cell line MLO-Y4 and the osteoblast cell line MC3T3 revealed unique differences. Three protein clusters, one related to glycolysis (Phosphoglycerate kinase 1, fructosebisphosphate aldolase A, hypoxia up-regulated 1 [ORP150], triosephosphate isomerase), one to protein folding (Mitochondrial Stress-70 protein, ORP150, Endoplasmin), and one to actin cytoskeleton regulation (Macrophage-capping protein [CapG], destrin, forms of lamin A and vimentin) were identified. Higher protein expression of ORP-150, Cap G, and destrin in MLO-Y4 cells compared with MC3T3 cells was validated by gene expression, Western blotting, and in vivo expression. These proteins were shown to be selective in osteocytes in vivo using immuno-staining of mouse ulnae. Destrin was most highly expressed in embedding osteoid osteocytes, GapG in embedded osteocytes, and ORP150 in deeply embedded osteocytes. In summary, the proteomic approach has yielded important information regarding molecular mechanisms used by osteocytes for embedding in matrix, the formation of dendritic processes, and protection within a hypoxic environment.
KW - Expression
KW - Osteoblast
KW - Osteocyte
KW - Systems biology
UR - http://www.scopus.com/inward/record.url?scp=78649425387&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649425387&partnerID=8YFLogxK
U2 - 10.1002/pmic.201000306
DO - 10.1002/pmic.201000306
M3 - Article
C2 - 20845334
AN - SCOPUS:78649425387
SN - 1615-9853
VL - 10
SP - 3688
EP - 3698
JO - Proteomics
JF - Proteomics
IS - 20
ER -