TY - JOUR
T1 - Identification of actionable fusions as an anti-EGFR resistance mechanism using a circulating tumor DNA assay
AU - Clifton, Katherine
AU - Rich, Thereasa A.
AU - Parseghian, Christine
AU - Raymond, Victoria M.
AU - Dasari, Arvind
AU - Lima Pereira, Allan Andresson
AU - Willis, Jason
AU - Loree, Jonathan M.
AU - Bauer, Todd M.
AU - Chae, Young Kwang
AU - Sherrill, Gary
AU - Fanta, Paul
AU - Grothey, Axel
AU - Hendifar, Andrew
AU - Henry, David
AU - Mahadevan, Daruka
AU - Nezami, Mohammad Amin
AU - Tan, Benjamin
AU - Wainberg, Zev A.
AU - Lanman, Richard
AU - Kopetz, Scott
AU - van Morris, Morris
N1 - Publisher Copyright:
Copyright © 2020 American Society of Clinical Oncology. All rights reserved.
PY - 2019
Y1 - 2019
N2 - PURPOSE Gene fusions are established oncogenic drivers and emerging therapeutic targets in advanced colorectal cancer. This study aimed to detail the frequencies and clinicopathological features of gene fusions in colorectal cancer using a circulating tumor DNA assay. METHODS Circulating tumor DNA samples in patients with advanced colorectal cancer were analyzed at 4,581 unique time points using a validated plasma-based multigene assay that includes assessment of fusions in FGFR2, FGFR3, RET, ALK, NTRK1, and ROS1. Associations between fusions and clinicopathological features were measured using Fisher's exact test. Relative frequencies of genomic alterations were compared between fusion-present and fusion-absent cases using an unpaired t test. RESULTS Forty-four unique fusions were identified in 40 (1.1%) of the 3,808 patients with circulating tumor DNA detected: RET (n = 6; 36% of all fusions detected), FGFR3 (n = 2; 27%), ALK (n = 10, 23%), NTRK1 (n = 3; 7%), ROS1 (n = 2; 5%), and FGFR2 (n = 1; 2%). Relative to nonfusion variants detected, fusions were more likely to be subclonal (odds ratio, 8.2; 95% CI, 2.94 to 23.00; P,.001). Mutations associated with a previously reported anti-epidermal growth factor receptor (anti-EGFR) therapy resistance signature (subclonal RAS and EGFR mutations) were found with fusions in FGFR3 (10 of 12 patients), RET (nine of 16 patients), and ALK (seven of 10 patients). For the 27 patients with available clinical histories, 21 (78%) had EGFR monoclonal antibody treatment before fusion detection. CONCLUSION Diverse and potentially actionable fusions can be detected using a circulating tumor DNA assay in patients with advanced colorectal cancer. Distribution of coexisting subclonal mutations in EGFR, KRAS, and NRAS in a subset of the patients with fusion-present colorectal cancer suggests that these fusions may arise as a novel mechanism of resistance to anti-EGFR therapies in patients with metastatic colorectal cancer.
AB - PURPOSE Gene fusions are established oncogenic drivers and emerging therapeutic targets in advanced colorectal cancer. This study aimed to detail the frequencies and clinicopathological features of gene fusions in colorectal cancer using a circulating tumor DNA assay. METHODS Circulating tumor DNA samples in patients with advanced colorectal cancer were analyzed at 4,581 unique time points using a validated plasma-based multigene assay that includes assessment of fusions in FGFR2, FGFR3, RET, ALK, NTRK1, and ROS1. Associations between fusions and clinicopathological features were measured using Fisher's exact test. Relative frequencies of genomic alterations were compared between fusion-present and fusion-absent cases using an unpaired t test. RESULTS Forty-four unique fusions were identified in 40 (1.1%) of the 3,808 patients with circulating tumor DNA detected: RET (n = 6; 36% of all fusions detected), FGFR3 (n = 2; 27%), ALK (n = 10, 23%), NTRK1 (n = 3; 7%), ROS1 (n = 2; 5%), and FGFR2 (n = 1; 2%). Relative to nonfusion variants detected, fusions were more likely to be subclonal (odds ratio, 8.2; 95% CI, 2.94 to 23.00; P,.001). Mutations associated with a previously reported anti-epidermal growth factor receptor (anti-EGFR) therapy resistance signature (subclonal RAS and EGFR mutations) were found with fusions in FGFR3 (10 of 12 patients), RET (nine of 16 patients), and ALK (seven of 10 patients). For the 27 patients with available clinical histories, 21 (78%) had EGFR monoclonal antibody treatment before fusion detection. CONCLUSION Diverse and potentially actionable fusions can be detected using a circulating tumor DNA assay in patients with advanced colorectal cancer. Distribution of coexisting subclonal mutations in EGFR, KRAS, and NRAS in a subset of the patients with fusion-present colorectal cancer suggests that these fusions may arise as a novel mechanism of resistance to anti-EGFR therapies in patients with metastatic colorectal cancer.
UR - http://www.scopus.com/inward/record.url?scp=85074961734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074961734&partnerID=8YFLogxK
U2 - 10.1200/PO.19.00141
DO - 10.1200/PO.19.00141
M3 - Article
C2 - 33015522
AN - SCOPUS:85074961734
SN - 2473-4284
VL - 3
JO - JCO Precision Oncology
JF - JCO Precision Oncology
ER -