TY - JOUR
T1 - Identification of a multifunctional domain in autonomously replicating sequence-binding factor 1 required for transcriptional activation, DNA replication, and gene silencing
AU - Miyake, T.
AU - Loch, C. M.
AU - Li, R.
PY - 2002
Y1 - 2002
N2 - Autonomously replicating sequence-binding factor 1 (ABF1) is a multifunctional, site-specific DNA binding protein that is essential for cell viability in Saccharomyces cerevisiae. ABF1 plays a direct role in transcriptional activation, stimulation of DNA replication, and gene silencing at the mating-type loci. Here we demonstrate that all three activities of ABF1 are conferred by the C terminus of the protein (amino acids [aa] 604 to 731). Furthermore, a detailed mutational analysis has revealed two important clusters of amino acid residues in the C terminus (C-terminal sequence 1 [CS1], aa 624 to 628; and CS2, aa 639 to 662). While both regions play a pivotal role in supporting cell viability, they make distinct contributions to ABF1 functions in various nuclear processes. CS1 specifically participates in transcriptional silencing and/or repression in a context-dependent manner, whereas CS2 is universally required for all three functions of ABF1. When tethered to specific regions of the genome, a 30-aa fragment that contains CS2 alone is sufficient for activation of transcription and chromosomal replication. In addition, CS2 is responsible for ABF1-mediated chromatin remodeling. Based on these results, we suggest that ABF1 may function as a chromatin-reorganizing factor to increase accessibility of the local chromatin structure, which in turn facilitates the action of additional factors to establish either an active or repressed chromatin state.
AB - Autonomously replicating sequence-binding factor 1 (ABF1) is a multifunctional, site-specific DNA binding protein that is essential for cell viability in Saccharomyces cerevisiae. ABF1 plays a direct role in transcriptional activation, stimulation of DNA replication, and gene silencing at the mating-type loci. Here we demonstrate that all three activities of ABF1 are conferred by the C terminus of the protein (amino acids [aa] 604 to 731). Furthermore, a detailed mutational analysis has revealed two important clusters of amino acid residues in the C terminus (C-terminal sequence 1 [CS1], aa 624 to 628; and CS2, aa 639 to 662). While both regions play a pivotal role in supporting cell viability, they make distinct contributions to ABF1 functions in various nuclear processes. CS1 specifically participates in transcriptional silencing and/or repression in a context-dependent manner, whereas CS2 is universally required for all three functions of ABF1. When tethered to specific regions of the genome, a 30-aa fragment that contains CS2 alone is sufficient for activation of transcription and chromosomal replication. In addition, CS2 is responsible for ABF1-mediated chromatin remodeling. Based on these results, we suggest that ABF1 may function as a chromatin-reorganizing factor to increase accessibility of the local chromatin structure, which in turn facilitates the action of additional factors to establish either an active or repressed chromatin state.
UR - http://www.scopus.com/inward/record.url?scp=0036135629&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036135629&partnerID=8YFLogxK
U2 - 10.1128/MCB.22.2.505-516.2002
DO - 10.1128/MCB.22.2.505-516.2002
M3 - Article
C2 - 11756546
AN - SCOPUS:0036135629
VL - 22
SP - 505
EP - 516
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
SN - 0270-7306
IS - 2
ER -