Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase

Yanzhu Yang, Jingsong Cao, Yuguang Shi

Research output: Contribution to journalArticle

65 Citations (Scopus)

Abstract

Phosphatidylglycerol (PG) is an important membrane polyglycerolphospholipid required for the activity of a variety of enzymes and is a precursor for synthesis of cardiolipin and bis(monoacylglycerol) phosphate. PG is subjected to remodeling subsequent to its de novo biosynthesis to incorporate appropriate acyl content for its biological functions and to prevent the harmful effect of lysophosphatidylglycerol (LPG) accumulation. The enzymes involved in the remodeling process have not yet been identified. We report here the identification and characterization of a human gene encoding an acyl-CoA: lysophosphatidylglycerol acyltransferase (LPGAT1). Expression of the LPGAT1 cDNA in Sf9 insect and COS-7 cells led to a significant increase in LPG acyltransferase activity. In contrast, no significant acyltransferase activities were detected against glycerol 3-phosphate or a variety of lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, and lysophosphatidylserine. The recombinant human LPGAT1 enzyme recognized various acyl-CoAs and LPGs as substrates but demonstrated clear preference to long chain saturated fatty acyl-CoAs and oleoyl-CoA as acyl donors, which is consistent with the lipid composition of endogenous PGs identified from different tissues. Kinetic analyses of LPGAT1 expressed in COS-7 cells showed that oleoyl-LPG was preferred over palmitoyl-LPG as an acyl receptor, whereas oleoyl-CoA was preferred over lauroyl-CoA as an acyl donor. Consistent with its proposed microsomal origin, LPGAT1 was localized to the endoplasmic reticulum by subcellular fractionation and immunohistochemical analyses. Northern blot analysis indicated that the human LPGAT1 was widely distributed, suggesting a dynamic functional role of the enzyme in different tissues.

Original languageEnglish (US)
Pages (from-to)55866-55874
Number of pages9
JournalJournal of Biological Chemistry
Volume279
Issue number53
DOIs
StatePublished - Dec 31 2004
Externally publishedYes

Fingerprint

Acyltransferases
Gene encoding
Endoplasmic Reticulum
Acyl Coenzyme A
Phosphatidylglycerols
Genes
COS Cells
Enzymes
Penicillin G Benzathine
Tissue
Lysophospholipids
Lysophosphatidylcholines
Cardiolipins
Biosynthesis
Fractionation
Northern Blotting
Insects
Complementary DNA
lysophosphatidylglycerol
Membranes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase. / Yang, Yanzhu; Cao, Jingsong; Shi, Yuguang.

In: Journal of Biological Chemistry, Vol. 279, No. 53, 31.12.2004, p. 55866-55874.

Research output: Contribution to journalArticle

@article{a2770aa68407423eb1bc13c50ef82b78,
title = "Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase",
abstract = "Phosphatidylglycerol (PG) is an important membrane polyglycerolphospholipid required for the activity of a variety of enzymes and is a precursor for synthesis of cardiolipin and bis(monoacylglycerol) phosphate. PG is subjected to remodeling subsequent to its de novo biosynthesis to incorporate appropriate acyl content for its biological functions and to prevent the harmful effect of lysophosphatidylglycerol (LPG) accumulation. The enzymes involved in the remodeling process have not yet been identified. We report here the identification and characterization of a human gene encoding an acyl-CoA: lysophosphatidylglycerol acyltransferase (LPGAT1). Expression of the LPGAT1 cDNA in Sf9 insect and COS-7 cells led to a significant increase in LPG acyltransferase activity. In contrast, no significant acyltransferase activities were detected against glycerol 3-phosphate or a variety of lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, and lysophosphatidylserine. The recombinant human LPGAT1 enzyme recognized various acyl-CoAs and LPGs as substrates but demonstrated clear preference to long chain saturated fatty acyl-CoAs and oleoyl-CoA as acyl donors, which is consistent with the lipid composition of endogenous PGs identified from different tissues. Kinetic analyses of LPGAT1 expressed in COS-7 cells showed that oleoyl-LPG was preferred over palmitoyl-LPG as an acyl receptor, whereas oleoyl-CoA was preferred over lauroyl-CoA as an acyl donor. Consistent with its proposed microsomal origin, LPGAT1 was localized to the endoplasmic reticulum by subcellular fractionation and immunohistochemical analyses. Northern blot analysis indicated that the human LPGAT1 was widely distributed, suggesting a dynamic functional role of the enzyme in different tissues.",
author = "Yanzhu Yang and Jingsong Cao and Yuguang Shi",
year = "2004",
month = "12",
day = "31",
doi = "10.1074/jbc.M406710200",
language = "English (US)",
volume = "279",
pages = "55866--55874",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "53",

}

TY - JOUR

T1 - Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase

AU - Yang, Yanzhu

AU - Cao, Jingsong

AU - Shi, Yuguang

PY - 2004/12/31

Y1 - 2004/12/31

N2 - Phosphatidylglycerol (PG) is an important membrane polyglycerolphospholipid required for the activity of a variety of enzymes and is a precursor for synthesis of cardiolipin and bis(monoacylglycerol) phosphate. PG is subjected to remodeling subsequent to its de novo biosynthesis to incorporate appropriate acyl content for its biological functions and to prevent the harmful effect of lysophosphatidylglycerol (LPG) accumulation. The enzymes involved in the remodeling process have not yet been identified. We report here the identification and characterization of a human gene encoding an acyl-CoA: lysophosphatidylglycerol acyltransferase (LPGAT1). Expression of the LPGAT1 cDNA in Sf9 insect and COS-7 cells led to a significant increase in LPG acyltransferase activity. In contrast, no significant acyltransferase activities were detected against glycerol 3-phosphate or a variety of lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, and lysophosphatidylserine. The recombinant human LPGAT1 enzyme recognized various acyl-CoAs and LPGs as substrates but demonstrated clear preference to long chain saturated fatty acyl-CoAs and oleoyl-CoA as acyl donors, which is consistent with the lipid composition of endogenous PGs identified from different tissues. Kinetic analyses of LPGAT1 expressed in COS-7 cells showed that oleoyl-LPG was preferred over palmitoyl-LPG as an acyl receptor, whereas oleoyl-CoA was preferred over lauroyl-CoA as an acyl donor. Consistent with its proposed microsomal origin, LPGAT1 was localized to the endoplasmic reticulum by subcellular fractionation and immunohistochemical analyses. Northern blot analysis indicated that the human LPGAT1 was widely distributed, suggesting a dynamic functional role of the enzyme in different tissues.

AB - Phosphatidylglycerol (PG) is an important membrane polyglycerolphospholipid required for the activity of a variety of enzymes and is a precursor for synthesis of cardiolipin and bis(monoacylglycerol) phosphate. PG is subjected to remodeling subsequent to its de novo biosynthesis to incorporate appropriate acyl content for its biological functions and to prevent the harmful effect of lysophosphatidylglycerol (LPG) accumulation. The enzymes involved in the remodeling process have not yet been identified. We report here the identification and characterization of a human gene encoding an acyl-CoA: lysophosphatidylglycerol acyltransferase (LPGAT1). Expression of the LPGAT1 cDNA in Sf9 insect and COS-7 cells led to a significant increase in LPG acyltransferase activity. In contrast, no significant acyltransferase activities were detected against glycerol 3-phosphate or a variety of lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, and lysophosphatidylserine. The recombinant human LPGAT1 enzyme recognized various acyl-CoAs and LPGs as substrates but demonstrated clear preference to long chain saturated fatty acyl-CoAs and oleoyl-CoA as acyl donors, which is consistent with the lipid composition of endogenous PGs identified from different tissues. Kinetic analyses of LPGAT1 expressed in COS-7 cells showed that oleoyl-LPG was preferred over palmitoyl-LPG as an acyl receptor, whereas oleoyl-CoA was preferred over lauroyl-CoA as an acyl donor. Consistent with its proposed microsomal origin, LPGAT1 was localized to the endoplasmic reticulum by subcellular fractionation and immunohistochemical analyses. Northern blot analysis indicated that the human LPGAT1 was widely distributed, suggesting a dynamic functional role of the enzyme in different tissues.

UR - http://www.scopus.com/inward/record.url?scp=11244319344&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=11244319344&partnerID=8YFLogxK

U2 - 10.1074/jbc.M406710200

DO - 10.1074/jbc.M406710200

M3 - Article

VL - 279

SP - 55866

EP - 55874

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 53

ER -