TY - JOUR
T1 - Hyperactive transforming growth factor-β1 signaling potentiates skeletal defects in a neurofibromatosis type 1 mouse model
AU - Rhodes, Steven D.
AU - Wu, Xiaohua
AU - He, Yongzheng
AU - Chen, Shi
AU - Yang, Hao
AU - Staser, Karl W.
AU - Wang, Jiapeng
AU - Zhang, Ping
AU - Jiang, Chang
AU - Yokota, Hiroki
AU - Dong, Ruizhi
AU - Peng, Xianghong
AU - Yang, Xianlin
AU - Murthy, Sreemala
AU - Azhar, Mohamad
AU - Mohammad, Khalid S.
AU - Xu, Mingjiang
AU - Guise, Theresa A.
AU - Yang, Feng Chun
PY - 2013/12
Y1 - 2013/12
N2 - Dysregulated transforming growth factor beta (TGF-β) signaling is associated with a spectrum of osseous defects as seen in Loeys-Dietz syndrome, Marfan syndrome, and Camurati-Engelmann disease. Intriguingly, neurofibromatosis type 1 (NF1) patients exhibit many of these characteristic skeletal features, including kyphoscoliosis, osteoporosis, tibial dysplasia, and pseudarthrosis; however, the molecular mechanisms mediating these phenotypes remain unclear. Here, we provide genetic and pharmacologic evidence that hyperactive TGF-β1 signaling pivotally underpins osseous defects in Nf1flox/-;Col2.3Cre mice, a model which closely recapitulates the skeletal abnormalities found in the human disease. Compared to controls, we show that serum TGF-β1 levels are fivefold to sixfold increased both in Nf1flox/-;Col2.3Cre mice and in a cohort of NF1 patients. Nf1-deficient osteoblasts, the principal source of TGF-β1 in bone, overexpress TGF-β1 in a gene dosage-dependent fashion. Moreover, Nf1-deficient osteoblasts and osteoclasts are hyperresponsive to TGF-β1 stimulation, potentiating osteoclast bone resorptive activity while inhibiting osteoblast differentiation. These cellular phenotypes are further accompanied by p21-Ras-dependent hyperactivation of the canonical TGF-β1-Smad pathway. Reexpression of the human, full-length neurofibromin guanosine triphosphatase (GTPase)-activating protein (GAP)-related domain (NF1 GRD) in primary Nf1-deficient osteoblast progenitors, attenuated TGF-β1 expression levels and reduced Smad phosphorylation in response to TGF-β1 stimulation. As an in vivo proof of principle, we demonstrate that administration of the TGF-β receptor 1 (TβRI) kinase inhibitor, SD-208, can rescue bone mass deficits and prevent tibial fracture nonunion in Nf1flox/-;Col2.3Cre mice. In sum, these data demonstrate a pivotal role for hyperactive TGF-β1 signaling in the pathogenesis of NF1-associated osteoporosis and pseudarthrosis, thus implicating the TGF-β signaling pathway as a potential therapeutic target in the treatment of NF1 osseous defects that are refractory to current therapies.
AB - Dysregulated transforming growth factor beta (TGF-β) signaling is associated with a spectrum of osseous defects as seen in Loeys-Dietz syndrome, Marfan syndrome, and Camurati-Engelmann disease. Intriguingly, neurofibromatosis type 1 (NF1) patients exhibit many of these characteristic skeletal features, including kyphoscoliosis, osteoporosis, tibial dysplasia, and pseudarthrosis; however, the molecular mechanisms mediating these phenotypes remain unclear. Here, we provide genetic and pharmacologic evidence that hyperactive TGF-β1 signaling pivotally underpins osseous defects in Nf1flox/-;Col2.3Cre mice, a model which closely recapitulates the skeletal abnormalities found in the human disease. Compared to controls, we show that serum TGF-β1 levels are fivefold to sixfold increased both in Nf1flox/-;Col2.3Cre mice and in a cohort of NF1 patients. Nf1-deficient osteoblasts, the principal source of TGF-β1 in bone, overexpress TGF-β1 in a gene dosage-dependent fashion. Moreover, Nf1-deficient osteoblasts and osteoclasts are hyperresponsive to TGF-β1 stimulation, potentiating osteoclast bone resorptive activity while inhibiting osteoblast differentiation. These cellular phenotypes are further accompanied by p21-Ras-dependent hyperactivation of the canonical TGF-β1-Smad pathway. Reexpression of the human, full-length neurofibromin guanosine triphosphatase (GTPase)-activating protein (GAP)-related domain (NF1 GRD) in primary Nf1-deficient osteoblast progenitors, attenuated TGF-β1 expression levels and reduced Smad phosphorylation in response to TGF-β1 stimulation. As an in vivo proof of principle, we demonstrate that administration of the TGF-β receptor 1 (TβRI) kinase inhibitor, SD-208, can rescue bone mass deficits and prevent tibial fracture nonunion in Nf1flox/-;Col2.3Cre mice. In sum, these data demonstrate a pivotal role for hyperactive TGF-β1 signaling in the pathogenesis of NF1-associated osteoporosis and pseudarthrosis, thus implicating the TGF-β signaling pathway as a potential therapeutic target in the treatment of NF1 osseous defects that are refractory to current therapies.
KW - Transforming growth factor-beta
KW - fracture nonunion
KW - neurofibromatosis type 1
KW - osteoporosis
KW - smad
KW - tgf-β
UR - http://www.scopus.com/inward/record.url?scp=84888040564&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888040564&partnerID=8YFLogxK
U2 - 10.1002/jbmr.1992
DO - 10.1002/jbmr.1992
M3 - Article
C2 - 23703870
AN - SCOPUS:84888040564
SN - 0884-0431
VL - 28
SP - 2476
EP - 2489
JO - Journal of Bone and Mineral Research
JF - Journal of Bone and Mineral Research
IS - 12
ER -