Hydrophobic bile acid-induced micronuclei formation, mitotic perturbations, and decreases in spindle checkpoint proteins: Relevance to genomic instability in colon carcinogenesis

Claire M. Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Mary Pat Moyer, Harris Bernstein

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

We show, for the first time, that hydrophobic bile acids cause aberrations of the mitotic machinery of colon cells that can give rise to aneuploidy, the chromosomal perturbations common in colon tumors. First, we show that DOC induces a statistically significant fourfold increase in the number of micronuclei in NCM-460 cells (a noncancerous colon cell line) and a threefold increase in the number of micronuclei in binucleated HT-29 colon cancer cells using the cytokinesis block micronucleus assay. Second, we observed mitotic aberrations after DOC treatment, including improper alignment of chromosomes at the metaphase plate, lagging chromosomes during anaphase, anaphase/telophase chromatin bridges, multipolar divisions, and formation of polynucleated cells. It was determined that there was a statistically significant threefold increase in the number of aberrant metaphases after short-term and long-term exposure of HT-29 and HCT-116 cells, respectively. Third, we showed with Western blots and immunohistochemistry that a likely basis for these mitosis-related perturbations included decreased expression of the spindle checkpoint proteins, Mad2, BubR1, and securin. Fourth, results of DOC treatment on nocodazole-challenged cells further indicated deficiencies in activation of the spindle assembly checkpoint. This study provides mechanisms by which hydrophobic bile acids can induce genomic instability in colon epithelial cells.

Original languageEnglish (US)
Pages (from-to)825-840
Number of pages16
JournalNutrition and Cancer
Volume62
Issue number6
DOIs
StatePublished - Aug 2010
Externally publishedYes

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Oncology
  • Nutrition and Dietetics
  • Cancer Research

Fingerprint

Dive into the research topics of 'Hydrophobic bile acid-induced micronuclei formation, mitotic perturbations, and decreases in spindle checkpoint proteins: Relevance to genomic instability in colon carcinogenesis'. Together they form a unique fingerprint.

Cite this