TY - JOUR
T1 - Holmium:YAG lithotripsy
T2 - Photothermal mechanism
AU - Vassar, George J.
AU - Chan, Kin F.
AU - Teichman, Joel M H
AU - Glickman, Randolph D.
AU - Weintraub, Susan T.
AU - Pfefer, T. Joshua
AU - Welch, Ashley J.
PY - 1999/4
Y1 - 1999/4
N2 - Objective: A series of experiments were conducted to test the hypothesis that the mechanism of holmium:YAG lithotripsy is photothermal. Methods and Results: To show that holmium:YAG lithotripsy requires direct absorption of optical energy, stone loss was compared for 150 J Ho:YAG lithotripsy of calcium oxalate monohydrate (COM) stones for hydrated stones irradiated in water (17 ± 3 mg) and hydrated stones irradiated in air (25 ± 9 mg) v dehydrated stones irradiated in air (40 ± 12 mg) (P < 0.001). To show that Ho:YAG lithotripsy occurs prior to vapor bubble collapse, the dynamics of lithotripsy in water and vapor bubble formation were documented with video flash photography. Holmium:YAG lithotripsy began at 60 μsec, prior to vapor bubble collapse. To show that Ho:YAG lithotripsy is fundamentally related to stone temperature, cystine, and COM mass loss was compared for stones initially at room temperature (~ 23°C) v frozen stones ablated within 2 minutes after removal from the freezer. Cystine and COM mass losses were greater for stones starting at room temperature than cold (P ≤ 0.05). To show that Ho:YAG lithotripsy involves a thermochemical reaction, composition analysis was done before and after lithotripsy. Postlithotripsy, COM yielded calcium carbonate; cystine yielded cysteine and free sulfur; calcium hydrogen phosphate dihydrate yielded calcium pyrophosphate; magnesium ammonium phosphate yielded ammonium carbonate and magnesium carbonate; and uric acid yielded cyanide. To show that Ho:YAG lithotripsy does not create significant shockwaves, pressure transients were measured during lithotripsy using needle hydrophones. Peak pressures were < 2 bars. Conclusion: The primary mechanism of Ho:YAG lithotripsy is photothermal. There are no significant photoacoustic effects.
AB - Objective: A series of experiments were conducted to test the hypothesis that the mechanism of holmium:YAG lithotripsy is photothermal. Methods and Results: To show that holmium:YAG lithotripsy requires direct absorption of optical energy, stone loss was compared for 150 J Ho:YAG lithotripsy of calcium oxalate monohydrate (COM) stones for hydrated stones irradiated in water (17 ± 3 mg) and hydrated stones irradiated in air (25 ± 9 mg) v dehydrated stones irradiated in air (40 ± 12 mg) (P < 0.001). To show that Ho:YAG lithotripsy occurs prior to vapor bubble collapse, the dynamics of lithotripsy in water and vapor bubble formation were documented with video flash photography. Holmium:YAG lithotripsy began at 60 μsec, prior to vapor bubble collapse. To show that Ho:YAG lithotripsy is fundamentally related to stone temperature, cystine, and COM mass loss was compared for stones initially at room temperature (~ 23°C) v frozen stones ablated within 2 minutes after removal from the freezer. Cystine and COM mass losses were greater for stones starting at room temperature than cold (P ≤ 0.05). To show that Ho:YAG lithotripsy involves a thermochemical reaction, composition analysis was done before and after lithotripsy. Postlithotripsy, COM yielded calcium carbonate; cystine yielded cysteine and free sulfur; calcium hydrogen phosphate dihydrate yielded calcium pyrophosphate; magnesium ammonium phosphate yielded ammonium carbonate and magnesium carbonate; and uric acid yielded cyanide. To show that Ho:YAG lithotripsy does not create significant shockwaves, pressure transients were measured during lithotripsy using needle hydrophones. Peak pressures were < 2 bars. Conclusion: The primary mechanism of Ho:YAG lithotripsy is photothermal. There are no significant photoacoustic effects.
UR - http://www.scopus.com/inward/record.url?scp=0032998253&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032998253&partnerID=8YFLogxK
U2 - 10.1089/end.1999.13.181
DO - 10.1089/end.1999.13.181
M3 - Article
C2 - 10360498
AN - SCOPUS:0032998253
SN - 0892-7790
VL - 13
SP - 181
EP - 190
JO - Journal of Endourology
JF - Journal of Endourology
IS - 3
ER -