Abstract
Lead (Pb) is a potent neurotoxin that disrupts synaptic neurotransmission. We report that Synaptotagmin I (SytI), a key regulator of Ca 2+ -evoked neurotransmitter release, has two high-affinity Pb 2+ binding sites that belong to its cytosolic C2A and C2B domains. The crystal structures of Pb 2+ -complexed C2 domains revealed that protein-bound Pb 2+ ions have holodirected coordination geometries and all-oxygen coordination spheres. The on-rate constants of Pb 2+ binding to the C2 domains of SytI are comparable to those of Ca 2+ and are diffusion-limited. In contrast, the off-rate constants are at least two orders of magnitude smaller, indicating that Pb 2+ can serve as both a thermodynamic and kinetic trap for the C2 domains. We demonstrate, using NMR spectroscopy, that population of these sites by Pb 2+ ions inhibits further Ca 2+ binding despite the existing coordination vacancies. Our work offers a unique insight into the bioinorganic chemistry of Pb(ii) and suggests a mechanism by which low concentrations of Pb 2+ ions can interfere with the Ca 2+ -dependent function of SytI in the cell.
Original language | English (US) |
---|---|
Pages (from-to) | 1211-1222 |
Number of pages | 12 |
Journal | Metallomics |
Volume | 10 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2018 |
ASJC Scopus subject areas
- General Medicine