TY - JOUR
T1 - Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase
AU - Adam, Liana
AU - Vadlamudi, Ratna
AU - Kondapaka, Sudhir Babu
AU - Chernoff, Jonathan
AU - Mendelsohn, John
AU - Kumar, Rakesh
PY - 1998/10/23
Y1 - 1998/10/23
N2 - The mechanisms through which heregulin (HRG) regulates the activities of breast cancer cells are currently unknown. We demonstrate that HRG stimulation of noninvasive breast cancer cells enhanced the conversion of globular to filamentous actin and the formation of membrane ruffles, stress fibers, filopodia, and lamellipodia and accompanied by increased cell migration. In addition, HRG triggered a rapid stimulation of p21-activated kinase1 (PAK1) activity and its redistribution into the leading edges of motile cells. The HRG-induced stimulation of PAK1 kinase activity followed phosphatidylinositol-3 kinase (PI-3 kinase) activation. Inhibition of PI-3 kinase activity blocked the activation of PAK1 kinase and also blocked cell migration in response to HRG. Furthermore, direct inhibition of PAK1 functions by the dominant-negative mutant suppressed the capacity of HRG to reorganize actin cytoskeleton structures. We also demonstrated that HRG stimulation promoted physical interactions between PAK1, actin, and human epidermal growth factor receptor 2 (HER2) receptors, and these interactions were dependent on the activation of PI-3 kinase. The blockade of HER2 receptor by an anti-HER2 monoclonal antibody resulted in the inhibition of HRG-mediated stimulation of PI-3 kinase/PAK pathway and also the formation of motile actin cytoskeleton structures but not extracellular signal-regulated kinases. These findings suggest a role of PI-3 kinase/PAK1-dependent reorganization of the cortical actin cytoskeleton in HRG-mediated increased cell migration, and these changes may have significant consequences leading to enhanced invasion by breast cancer cells.
AB - The mechanisms through which heregulin (HRG) regulates the activities of breast cancer cells are currently unknown. We demonstrate that HRG stimulation of noninvasive breast cancer cells enhanced the conversion of globular to filamentous actin and the formation of membrane ruffles, stress fibers, filopodia, and lamellipodia and accompanied by increased cell migration. In addition, HRG triggered a rapid stimulation of p21-activated kinase1 (PAK1) activity and its redistribution into the leading edges of motile cells. The HRG-induced stimulation of PAK1 kinase activity followed phosphatidylinositol-3 kinase (PI-3 kinase) activation. Inhibition of PI-3 kinase activity blocked the activation of PAK1 kinase and also blocked cell migration in response to HRG. Furthermore, direct inhibition of PAK1 functions by the dominant-negative mutant suppressed the capacity of HRG to reorganize actin cytoskeleton structures. We also demonstrated that HRG stimulation promoted physical interactions between PAK1, actin, and human epidermal growth factor receptor 2 (HER2) receptors, and these interactions were dependent on the activation of PI-3 kinase. The blockade of HER2 receptor by an anti-HER2 monoclonal antibody resulted in the inhibition of HRG-mediated stimulation of PI-3 kinase/PAK pathway and also the formation of motile actin cytoskeleton structures but not extracellular signal-regulated kinases. These findings suggest a role of PI-3 kinase/PAK1-dependent reorganization of the cortical actin cytoskeleton in HRG-mediated increased cell migration, and these changes may have significant consequences leading to enhanced invasion by breast cancer cells.
UR - http://www.scopus.com/inward/record.url?scp=0032561206&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032561206&partnerID=8YFLogxK
U2 - 10.1074/jbc.273.43.28238
DO - 10.1074/jbc.273.43.28238
M3 - Article
C2 - 9774445
AN - SCOPUS:0032561206
SN - 0021-9258
VL - 273
SP - 28238
EP - 28246
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 43
ER -