Heme oxygenase and the kidney

Nathalie Hill-Kapturczak, Se Ho Chang, Anupam Agarwal

Research output: Contribution to journalReview article

100 Scopus citations

Abstract

Heme plays a significant pathogenic role in several diseases involving the kidney. The cellular content of heme, derived either from the delivery of filtered heme proteins such as hemoglobin and myoglobin, or from the breakdown of ubiquitous intracellular heme proteins, is regulated via the heme oxygenase enzyme system. Heme oxygenases catalyze the rate-limiting step in heme degradation, resulting in the formation of iron, carbon monoxide, and biliverdin, which is subsequently converted to bilirubin by biliverdin reductase. Recent attention has focused on the biological effects of product(s) of this enzymatic reaction, which have important antioxidant, anti-inflammatory, and cytoprotective functions. Three isoforms of heme oxygenase (HO) enzyme have been described: an inducible isoform, HO-1, and two constitutively expressed isoforms, HO-2 and HO-3. Induction of HO-1 occurs as an adaptive and beneficial response to several injurious stimuli, and has been implicated in many clinically relevant disease states including atherosclerosis, transplant rejection, endotoxic shock, hypertension, acute lung injury, acute renal injury, as well as others. This review will focus predominantly on the role of HO-1 in the kidney.

Original languageEnglish (US)
Pages (from-to)307-321
Number of pages15
JournalDNA and Cell Biology
Volume21
Issue number4
DOIs
StatePublished - Jun 17 2002

    Fingerprint

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this