Growth inhibitory efficacy and anti-aromatase activity of tabebuia avellanedae in a model for post-menopausal luminal a breast cancer

Nitin Telang, Hareesh B. Nair, George Y.C. Wong

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Aromatase inhibitors (AIs) represent a treatment option for post-menopausal estrogen receptor-positive (ER+) breast cancer as monotherapy, or in combination with cyclin-dependent kinase 4/6 or mTOR inhibitors. Long-term treatment with these agents leads to dose-limiting toxicity and drug resistance. Natural substances provide testable alternatives to current therapy. Tabebuia avellanedae (TA) tree is indigenous to the Amazon rainforest. The inner bark of TA represents a medicinal dietary supplement known as Taheebo. Non-fractionated aqueous extract from TA is an effective growth inhibitor in the Luminal A and triple negative breast cancer models. The quinone derivative naphthofurandione (NFD) is a major bioactive agent in TA. The present study examined the efficacy of finely ground powder from the inner bark of TA, available under the name of Taheebo-NFD-Marugoto (TNM). The ER+ MCF-7 cells stably transfected with the aromatase gene MCF-7AROM represented a model for aromatase-expressing post-menopausal breast cancer. Anchorage-independent colony formation, cell cycle progression, pro-apoptotic caspase 3/7 activity, apoptosis-specific gene expression, aromatase activity and select estradiol (E2) target gene expression represented the mechanistic end points. Treatment of MCF-7AROM cells with TNM induced a dose-dependent reduction in E2-promoted anchorage-independent colony number. Mechanistic assays on TNM-treated MCF-7AROM cells demonstrated that TNM at a concentration of 10 μg (NFD content: 2 ng), induced S-phase arrest, increased pro-apoptotic caspase 3/7 activity, increased pro-apoptotic BAX and decreased anti-apoptotic BCL-2 gene expression, and inhibited aromatase activity. Additionally, TNM treatment downregulated ESR-1 (gene for ER-α), aromatase and progesterone gene expression and reduced mRNA levels of E2 target genes pS2, GRB2 and cyclin D1. Inhibition of aromatase activity, based on the NFD content of TNM was superior to the clinical AIs Letrozole and Exemestane. These data demonstrated the potential efficacy of TNM as a nutritional alternative for current therapy of aromatase positive, post-menopausal breast cancer.

Original languageEnglish (US)
Pages (from-to)222-229
Number of pages8
JournalBiomedical Reports
Volume11
Issue number5
DOIs
StatePublished - Nov 2019

Keywords

  • Aromatase inhibition
  • Breast cancer cells
  • Growth inhibition
  • Tabebuia avelanedae

ASJC Scopus subject areas

  • General Pharmacology, Toxicology and Pharmaceutics
  • General Biochemistry, Genetics and Molecular Biology
  • General Neuroscience

Fingerprint

Dive into the research topics of 'Growth inhibitory efficacy and anti-aromatase activity of tabebuia avellanedae in a model for post-menopausal luminal a breast cancer'. Together they form a unique fingerprint.

Cite this