Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions

Yubing Tong, Jayaram K. Udupa, Krzysztof C. Ciesielski, Joseph M. McDonough, Andrew Mong, Robert M. Campbell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations


4D or dynamic imaging of the thorax has many potential applications [1, 2]. CT and MRI offer sufficient speed to acquire motion information via 4D imaging. However they have different constraints and requirements. For both modalities both prospective and retrospective respiratory gating and tracking techniques have been developed [3, 4]. For pediatric imaging, x-ray radiation becomes a primary concern and MRI remains as the de facto choice. The pediatric subjects we deal with often suffer from extreme malformations of their chest wall, diaphragm, and/or spine, as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort. Moreover, we are interested in the mechanical function of their thorax in its natural form in tidal breathing. Therefore free-breathing MRI acquisition is the ideal modality of imaging for these patients. In our set up, for each coronal (or sagittal) slice position, slice images are acquired at a rate of about 200-300 ms/slice over several natural breathing cycles. This produces typically several thousands of slices which contain both the anatomic and dynamic information. However, it is not trivial to form a consistent and well defined 4D volume from these data. In this paper, we present a novel graph-based combinatorial optimization solution for constructing the best possible 4D scene from such data entirely in the digital domain. Our proposed method is purely image-based and does not need breath holding or any external surrogates or instruments to record respiratory motion or tidal volume. Both adult and children patientsa' data are used to illustrate the performance of the proposed method. Experimental results show that the reconstructed 4D scenes are smooth and consistent spatially and temporally, agreeing with known shape and motion of the lungs.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2014
Subtitle of host publicationBiomedical Applications in Molecular, Structural, and Functional Imaging
ISBN (Print)9780819498311
StatePublished - 2014
Externally publishedYes
EventMedical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging - San Diego, CA, United States
Duration: Feb 16 2014Feb 18 2014

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherMedical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging
Country/TerritoryUnited States
CitySan Diego, CA


  • 4D image construction
  • Dynamic MR imaging
  • Graph optimization
  • Imaging lungs

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions'. Together they form a unique fingerprint.

Cite this