Glucose absorption and production following oral glucose: Comparison of compartmental and arteriovenous-difference methods

A. Mari, J. Wahren, Ralph A Defronzo, E. Ferrannini

Research output: Contribution to journalArticle

38 Citations (Scopus)

Abstract

Both whole-body models and the regional arteriovenous (AV)-difference method have been used to calculates systemic glucose rates of appearance (Ras) under non-steady-state conditions. Although whole-body models have been experimentally validated in the dog, direct comparison of the whole-body and regional-balance approach has not been made in man. We reanalyzed published data obtained by combining the double-tracer technique ([3H]glucose infusion with ingestion of a [14C]glucose-labeled load) with hepatic vein catheterization. Steele's monocompartmental model underestimated the Ra of oral glucose ([RaO] by 12%, P < .0001) and overestimated the Ra of endogenous glucose ([RaE] by 19%, P < .0001) in comparison to a two-compartment (2-c) model calculation. Splanchnic balance data were used to compute the total glucose Ra (RaT) with either steady-state or non-steady-state equations (the latter by estimating splanchnic transit times). Except for one early time point (15 minutes), the two calculations agreed well with one another. The glucose RaT by the balance method was well correlated with that calculated by the 2-c whole-body model (r = .72, P < .0001 on all data points); however, the former significantly underestimated the latter by 0.62 mg · min-1 · kg-1 (or 13%, P < .01) on average throughout the absorptive period. This bias was small in comparison to the estimated random error effecting the calculation of glucose RaT by the model, which averaged 1.4 mg · min-1 · kg-1 (corresponding to a variation coefficient of ∼30%). Measurement of recycled [14C]glucose made it possible to estimate that Cori cylce activity during the final 2 hours of the absorptive period contributed 55% to the residual rate of hepatic glucose release. We conclude that in man during the non-steady state following glucose ingestion, the splanchnic balance (invasive method) and whole-body (noninvasive method) techniques yield equivalent glucose RaT. Thus, the physiological conclusions previously reached on the quantitative disposal of an oral glucose load are valid.

Original languageEnglish (US)
Pages (from-to)1419-1425
Number of pages7
JournalMetabolism
Volume43
Issue number11
DOIs
StatePublished - 1994

Fingerprint

Glucose
Viscera
Eating
Hepatic Veins
Catheterization
Dogs
Liver

ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism

Cite this

Glucose absorption and production following oral glucose : Comparison of compartmental and arteriovenous-difference methods. / Mari, A.; Wahren, J.; Defronzo, Ralph A; Ferrannini, E.

In: Metabolism, Vol. 43, No. 11, 1994, p. 1419-1425.

Research output: Contribution to journalArticle

@article{f6588e77fb0748ac9a8dfba075573949,
title = "Glucose absorption and production following oral glucose: Comparison of compartmental and arteriovenous-difference methods",
abstract = "Both whole-body models and the regional arteriovenous (AV)-difference method have been used to calculates systemic glucose rates of appearance (Ras) under non-steady-state conditions. Although whole-body models have been experimentally validated in the dog, direct comparison of the whole-body and regional-balance approach has not been made in man. We reanalyzed published data obtained by combining the double-tracer technique ([3H]glucose infusion with ingestion of a [14C]glucose-labeled load) with hepatic vein catheterization. Steele's monocompartmental model underestimated the Ra of oral glucose ([RaO] by 12{\%}, P < .0001) and overestimated the Ra of endogenous glucose ([RaE] by 19{\%}, P < .0001) in comparison to a two-compartment (2-c) model calculation. Splanchnic balance data were used to compute the total glucose Ra (RaT) with either steady-state or non-steady-state equations (the latter by estimating splanchnic transit times). Except for one early time point (15 minutes), the two calculations agreed well with one another. The glucose RaT by the balance method was well correlated with that calculated by the 2-c whole-body model (r = .72, P < .0001 on all data points); however, the former significantly underestimated the latter by 0.62 mg · min-1 · kg-1 (or 13{\%}, P < .01) on average throughout the absorptive period. This bias was small in comparison to the estimated random error effecting the calculation of glucose RaT by the model, which averaged 1.4 mg · min-1 · kg-1 (corresponding to a variation coefficient of ∼30{\%}). Measurement of recycled [14C]glucose made it possible to estimate that Cori cylce activity during the final 2 hours of the absorptive period contributed 55{\%} to the residual rate of hepatic glucose release. We conclude that in man during the non-steady state following glucose ingestion, the splanchnic balance (invasive method) and whole-body (noninvasive method) techniques yield equivalent glucose RaT. Thus, the physiological conclusions previously reached on the quantitative disposal of an oral glucose load are valid.",
author = "A. Mari and J. Wahren and Defronzo, {Ralph A} and E. Ferrannini",
year = "1994",
doi = "10.1016/0026-0495(94)90038-8",
language = "English (US)",
volume = "43",
pages = "1419--1425",
journal = "Metabolism: Clinical and Experimental",
issn = "0026-0495",
publisher = "W.B. Saunders Ltd",
number = "11",

}

TY - JOUR

T1 - Glucose absorption and production following oral glucose

T2 - Comparison of compartmental and arteriovenous-difference methods

AU - Mari, A.

AU - Wahren, J.

AU - Defronzo, Ralph A

AU - Ferrannini, E.

PY - 1994

Y1 - 1994

N2 - Both whole-body models and the regional arteriovenous (AV)-difference method have been used to calculates systemic glucose rates of appearance (Ras) under non-steady-state conditions. Although whole-body models have been experimentally validated in the dog, direct comparison of the whole-body and regional-balance approach has not been made in man. We reanalyzed published data obtained by combining the double-tracer technique ([3H]glucose infusion with ingestion of a [14C]glucose-labeled load) with hepatic vein catheterization. Steele's monocompartmental model underestimated the Ra of oral glucose ([RaO] by 12%, P < .0001) and overestimated the Ra of endogenous glucose ([RaE] by 19%, P < .0001) in comparison to a two-compartment (2-c) model calculation. Splanchnic balance data were used to compute the total glucose Ra (RaT) with either steady-state or non-steady-state equations (the latter by estimating splanchnic transit times). Except for one early time point (15 minutes), the two calculations agreed well with one another. The glucose RaT by the balance method was well correlated with that calculated by the 2-c whole-body model (r = .72, P < .0001 on all data points); however, the former significantly underestimated the latter by 0.62 mg · min-1 · kg-1 (or 13%, P < .01) on average throughout the absorptive period. This bias was small in comparison to the estimated random error effecting the calculation of glucose RaT by the model, which averaged 1.4 mg · min-1 · kg-1 (corresponding to a variation coefficient of ∼30%). Measurement of recycled [14C]glucose made it possible to estimate that Cori cylce activity during the final 2 hours of the absorptive period contributed 55% to the residual rate of hepatic glucose release. We conclude that in man during the non-steady state following glucose ingestion, the splanchnic balance (invasive method) and whole-body (noninvasive method) techniques yield equivalent glucose RaT. Thus, the physiological conclusions previously reached on the quantitative disposal of an oral glucose load are valid.

AB - Both whole-body models and the regional arteriovenous (AV)-difference method have been used to calculates systemic glucose rates of appearance (Ras) under non-steady-state conditions. Although whole-body models have been experimentally validated in the dog, direct comparison of the whole-body and regional-balance approach has not been made in man. We reanalyzed published data obtained by combining the double-tracer technique ([3H]glucose infusion with ingestion of a [14C]glucose-labeled load) with hepatic vein catheterization. Steele's monocompartmental model underestimated the Ra of oral glucose ([RaO] by 12%, P < .0001) and overestimated the Ra of endogenous glucose ([RaE] by 19%, P < .0001) in comparison to a two-compartment (2-c) model calculation. Splanchnic balance data were used to compute the total glucose Ra (RaT) with either steady-state or non-steady-state equations (the latter by estimating splanchnic transit times). Except for one early time point (15 minutes), the two calculations agreed well with one another. The glucose RaT by the balance method was well correlated with that calculated by the 2-c whole-body model (r = .72, P < .0001 on all data points); however, the former significantly underestimated the latter by 0.62 mg · min-1 · kg-1 (or 13%, P < .01) on average throughout the absorptive period. This bias was small in comparison to the estimated random error effecting the calculation of glucose RaT by the model, which averaged 1.4 mg · min-1 · kg-1 (corresponding to a variation coefficient of ∼30%). Measurement of recycled [14C]glucose made it possible to estimate that Cori cylce activity during the final 2 hours of the absorptive period contributed 55% to the residual rate of hepatic glucose release. We conclude that in man during the non-steady state following glucose ingestion, the splanchnic balance (invasive method) and whole-body (noninvasive method) techniques yield equivalent glucose RaT. Thus, the physiological conclusions previously reached on the quantitative disposal of an oral glucose load are valid.

UR - http://www.scopus.com/inward/record.url?scp=0027942076&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027942076&partnerID=8YFLogxK

U2 - 10.1016/0026-0495(94)90038-8

DO - 10.1016/0026-0495(94)90038-8

M3 - Article

C2 - 7968597

AN - SCOPUS:0027942076

VL - 43

SP - 1419

EP - 1425

JO - Metabolism: Clinical and Experimental

JF - Metabolism: Clinical and Experimental

SN - 0026-0495

IS - 11

ER -