TY - JOUR
T1 - Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit
AU - Pace, Helen C.
AU - Garrison, Preston N.
AU - Robinson, Angela K.
AU - Barnes, Larry D.
AU - Draganescu, Alexandra
AU - Rösler, Angelika
AU - Blackburn, G. Michael
AU - Siprashvili, Zurab
AU - Croce, Carlo M.
AU - Huebner, Kay
AU - Brenner, Charles
PY - 1998/5/12
Y1 - 1998/5/12
N2 - Alterations in the FHIT gene at 3p14.2 occur as early and frequent events in the development of several common human cancers. The ability of human Fhit-negative cells to form tumors in nude mice is suppressed by stable reexpression of Fhit protein. Fhit protein is a diadenosine P1,P3-triphosphate (ApppA) hydrolase whose fungal and animal homologs form a branch of the histidine triad (HIT) superfamily of nucleotide-binding proteins. Because the His-96 →Asn substitution of Fhit, which retards ApppA hydrolase activity by seven orders of magnitude, did not block tumor-suppressor activity in vivo, we determined whether this mutation affected ApppA binding or particular steps in the ApppA catalytic cycle. Evidence is presented that His-96 → Asn protein binds ApppA well and forms an enzyme-AMP intermediate extremely poorly, suggesting that Fhit-substrate complexes are the likely signaling form of the enzyme. The cocrystal structure of Fhit bound to Ado-p-CH2-p-ps-Ado (IB2), a nonhydrolyzable ApppA analog, was refined to 3.1 Å, and the structure of His-96 → Asn Fhit with IB2 was refined to 2.6 Å, revealing that two ApppA molecules bind per Fhit dinier; identifying two additional adenosine-binding sites on the dirner surface; and illustrating that His-98 is positioned to donate a hydrogen bond to the scissile bridging oxygen of ApppA substrates. The form of Fhit bound to two ApppA substrates would present to the cell a dramatically phosphorylated surface, prominently displaying six phosphate groups and two adenosine moieties in place of a deep cavity lined with histidines, arginines, and glutamines.
AB - Alterations in the FHIT gene at 3p14.2 occur as early and frequent events in the development of several common human cancers. The ability of human Fhit-negative cells to form tumors in nude mice is suppressed by stable reexpression of Fhit protein. Fhit protein is a diadenosine P1,P3-triphosphate (ApppA) hydrolase whose fungal and animal homologs form a branch of the histidine triad (HIT) superfamily of nucleotide-binding proteins. Because the His-96 →Asn substitution of Fhit, which retards ApppA hydrolase activity by seven orders of magnitude, did not block tumor-suppressor activity in vivo, we determined whether this mutation affected ApppA binding or particular steps in the ApppA catalytic cycle. Evidence is presented that His-96 → Asn protein binds ApppA well and forms an enzyme-AMP intermediate extremely poorly, suggesting that Fhit-substrate complexes are the likely signaling form of the enzyme. The cocrystal structure of Fhit bound to Ado-p-CH2-p-ps-Ado (IB2), a nonhydrolyzable ApppA analog, was refined to 3.1 Å, and the structure of His-96 → Asn Fhit with IB2 was refined to 2.6 Å, revealing that two ApppA molecules bind per Fhit dinier; identifying two additional adenosine-binding sites on the dirner surface; and illustrating that His-98 is positioned to donate a hydrogen bond to the scissile bridging oxygen of ApppA substrates. The form of Fhit bound to two ApppA substrates would present to the cell a dramatically phosphorylated surface, prominently displaying six phosphate groups and two adenosine moieties in place of a deep cavity lined with histidines, arginines, and glutamines.
UR - http://www.scopus.com/inward/record.url?scp=11544354950&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=11544354950&partnerID=8YFLogxK
U2 - 10.1073/pnas.95.10.5484
DO - 10.1073/pnas.95.10.5484
M3 - Article
C2 - 9576908
AN - SCOPUS:11544354950
VL - 95
SP - 5484
EP - 5489
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 10
ER -