TY - JOUR
T1 - Functional polymorphisms in the α-subunit of the human epithelial Na+ channel increase activity
AU - Tong, Qiusheng
AU - Menon, Anil G.
AU - Stockand, James D.
PY - 2006/4
Y1 - 2006/4
N2 - Activity of the epithelial Na+ channel (ENaC) is limiting for Na+ reabsorption at the distal nephron. Gain-of-function mutations in ENaC cause Liddle's syndrome: a severe form of inheritable hypertension. Several polymorphisms in α-hENaC possibly associated with abnormal Na + handling by the kidney and the salt-sensitive hypertension prevalent in black populations have been reported. The functional effects of α-hENaC polymorphisms on channel activity, however, remain controversial and have not been directly tested in a mammalian background. We ask here whether polymorphisms at positions 334, 618, and 663 in α-hENaC influence channel activity. Activity of wild-type (A334, C618, A663) and polymorphic ENaC expressed in Chinese hamster ovary cells was assessed with patch-clamp electrophysiology. While the A334T polymorphism had little effect on macroscopic ENaC currents, the C618F and A663T polymorphisms significantly increased ENaC activity >3.3- and 1.6-fold, respectively. Similarly, polymorphic ENaC had greater activity compared with wild-type channels in excised patches with activity of C618F and A663T channels increased 3.8- and 2.6-fold, respectively. Unitary channel conductances and reversal potentials were not different for polymorphic and wild-type ENaC. Increases in activity resulted primarily from increases in the apparent number of active (polymorphic) channels in the plasma membrane. Moreover, addition of a reducing agent to the cytosol significantly increased activity of wild-type ENaC equal to that of C618F polymorphic channels but had no effect on these latter channels. These results are consistent with the C618F and A663T polymorphisms leading to elevated ENaC activity with the possibility that they facilitate altered Na+ handling by the kidney.
AB - Activity of the epithelial Na+ channel (ENaC) is limiting for Na+ reabsorption at the distal nephron. Gain-of-function mutations in ENaC cause Liddle's syndrome: a severe form of inheritable hypertension. Several polymorphisms in α-hENaC possibly associated with abnormal Na + handling by the kidney and the salt-sensitive hypertension prevalent in black populations have been reported. The functional effects of α-hENaC polymorphisms on channel activity, however, remain controversial and have not been directly tested in a mammalian background. We ask here whether polymorphisms at positions 334, 618, and 663 in α-hENaC influence channel activity. Activity of wild-type (A334, C618, A663) and polymorphic ENaC expressed in Chinese hamster ovary cells was assessed with patch-clamp electrophysiology. While the A334T polymorphism had little effect on macroscopic ENaC currents, the C618F and A663T polymorphisms significantly increased ENaC activity >3.3- and 1.6-fold, respectively. Similarly, polymorphic ENaC had greater activity compared with wild-type channels in excised patches with activity of C618F and A663T channels increased 3.8- and 2.6-fold, respectively. Unitary channel conductances and reversal potentials were not different for polymorphic and wild-type ENaC. Increases in activity resulted primarily from increases in the apparent number of active (polymorphic) channels in the plasma membrane. Moreover, addition of a reducing agent to the cytosol significantly increased activity of wild-type ENaC equal to that of C618F polymorphic channels but had no effect on these latter channels. These results are consistent with the C618F and A663T polymorphisms leading to elevated ENaC activity with the possibility that they facilitate altered Na+ handling by the kidney.
KW - Hypertension
KW - Liddle's syndrome
KW - Sequence variations
UR - http://www.scopus.com/inward/record.url?scp=33645748224&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33645748224&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00312.2005
DO - 10.1152/ajprenal.00312.2005
M3 - Article
C2 - 16249274
AN - SCOPUS:33645748224
SN - 1931-857X
VL - 290
SP - F821-F827
JO - American Journal of Physiology - Renal Physiology
JF - American Journal of Physiology - Renal Physiology
IS - 4
ER -