Fortress Brain

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Neurodegenerative diseases are associated with neuronal inclusions, comprised of protein aggregates. In Alzheimer's Disease (AD) and Lewy Body Disease (LBD) such lesions are distributed in a hierarchical retrograde transynaptic spatial pattern. This implies a retrograde transynaptic temporal propagation as well. There can be few explanations for this other than infectious agents (prions and viruses). This suggests that AD and LBD (at least) may have infectious origins. Transynaptic infiltration of the CNS along cranial nerve or other major projections, by one or more infectious agents has important implications. The clinical syndrome and natural history of each neurodegenerative disorder will reflect its portal of entry. There may be a different neurodegenerative syndrome for each cranial nerve or other portal of entry, and not all may manifest as "dementia" Each syndrome may be associated with more than one pathological lesion. Each pathology may be associated with several clinical syndromes. Host-parasite interactions are species specific. This may explain the rarity of AD-like pathology in most other older mammals. Over evolutionary timescales, the human brain should be adapted to predation by neurotropic agents. Viewed from this perspective, the prion-like pro-inflammatory and pro-apoptotic properties of β-amyloid and other proteins may be adaptive, and anti-microbial. Reductions in synaptic density may slow the progress of invading pathogens, while perineuronal nets and other structures may guard the gates. This suggests a defense in depth of a structure, the brain, that is inherently vulnerable to invasion along its neural networks.

Original languageEnglish (US)
Pages (from-to)118-121
Number of pages4
JournalMedical Hypotheses
Volume80
Issue number2
DOIs
StatePublished - Feb 1 2013

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Fortress Brain'. Together they form a unique fingerprint.

Cite this