Formation of otoconia in the Japanese red-bellied newt, Cynops pyrrhogaster

M. L. Wiederhold, M. Yamashita, K. Larsen, M. Asashima

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Pre-mated adult female newts and fertilized eggs will be flown on the International Microgravity Laboratory-2 flight, in 1994. One objective of the flight will be to observe the influence of microgravity on the development of the gravity-sensing organs in the inner ear. These organs contain sensory hair cells covered by a layer of dense stones (otoconia). Gravity and linear acceleration exert forces on these masses, leading to excitation of the nerve fibers innervating the hair cells. If the production of the otoliths is regulated to reach an optimal weight, their development might be abnormal in microgravity. Ground-based control experiments are reported describing the developmental sequence in which both the otoliths and their associated sensory epithelium and the semicircular canals appear and develop. Three-dimensional reconstruction of serial sections through the otic vesicle of newt embryos at stages 31 through 58 demonstrate the first appearance, relative position and growth of the otoliths. Reports of experiments in which fertilized frog eggs were flown on a Russian Cosmos mission conclude that the utricular otolith is increased in volume, whereas the saccular otolith maintains normal size, suggesting that at least in the utricle, the weight of the otolith might be regulated.

Original languageEnglish (US)
Pages (from-to)327-330
Number of pages4
JournalAdvances in Space Research
Issue number8
StatePublished - Aug 1994

ASJC Scopus subject areas

  • Aerospace Engineering
  • Astronomy and Astrophysics
  • Geophysics
  • Atmospheric Science
  • Space and Planetary Science
  • Earth and Planetary Sciences(all)


Dive into the research topics of 'Formation of otoconia in the Japanese red-bellied newt, Cynops pyrrhogaster'. Together they form a unique fingerprint.

Cite this