Abstract
In X-linked hypophosphatemia (XLH) and in its murine homologue, the Hyp mouse, increased circulating concentrations of fibroblast growth factor 23 (FGF-23) are critical to the pathogenesis of disordered metabolism of phosphate (Pi) and 1,25-dihydroxyvitamin D [1,25(OH)2D]. In this study, we hypothesized that in Hyp mice, FGF-23-mediated suppression of renal 1,25(OH)2D production and Pi reabsorption depends on activation of mitogen-activated protein kinase (MAPK) signaling. Wild-type and Hyp mice were administered either vehicle or the MEK inhibitor PD0325901 (12.5mg/kg) orally daily for 4 days. At baseline, the renal abundance of early growth response 1 (egr1) mRNA was approximately 2-fold greater in Hyp mice than in wild-type mice. Treatment with PD0325901 greatly suppressed egr1 mRNA abundance in both wild-type and Hyp mice. In Hyp mice, PD0325901 induced an 8-fold increase in renal 1α-hydroxylase mRNA expression and a 4-fold increase in serum 1,25(OH)2D concentrations compared with vehicle-treated Hyp mice. Serum Pi levels in Hyp mice increased significantly after treatment with PD0325901, and the increase was associated with increased renal Npt2a mRNA abundance and brush-border membrane Npt2a protein expression. These findings provide evidence that in Hyp mice, MAPK signaling is constitutively activated in the kidney and support the hypothesis that the FGF-23-mediated suppression of renal 1,25(OH)2D production and Pi reabsorption depends on activation of MAPK signaling via MEK/ERK1/2. These findings demonstrate the physiologic importance of MAPK signaling in the actions of FGF-23 in regulating renal 1,25(OH)2D and Pi metabolism.
Original language | English (US) |
---|---|
Pages (from-to) | 1883-1890 |
Number of pages | 8 |
Journal | Journal of Bone and Mineral Research |
Volume | 26 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2011 |
Externally published | Yes |
Keywords
- 1,25(OH)D
- FGF-23
- MAPK
- XLH
- phosphate
ASJC Scopus subject areas
- Endocrinology, Diabetes and Metabolism
- Orthopedics and Sports Medicine