Far-field potential production by quadrupole generators in cylindrical volume conductors

Daniel Dumitru, John C. King

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Far-field potentials have been observed clinically and recognized as such for approximately 30 years. Unfortunately a complete understanding of far-field potential generation is not yet at hand. An attractive model is the representation of an action potential by a quadrupole consisting of a leading and trailing dipole with respect to the direction of propagation. This investigation physically models an action potential by using a quadrupole constant current source and substantiates the concept that an action potential as modeled by two dipoles back-to-back is capable of producing far-field potentials in cylindrical volume conductors. The 4 postulated mechanisms of generating far-field potentials are validated, i.e., an action potential encountering (1) different size volume conductors, (2) the termination of excitable tissue, (3) a change in conducting medium conductivity, and (4) a bend in the nerve. A fifth postulated but previously not demonstrated method of far-field production, neural branching, is shown by the quadrupole model to also be capable of yielding far-field potentials. The termination of a volume conductor is also shown to be capable of generating a voltage difference across the quadrupole. Any of the above 6 conditions create an alteration in the symmetry of the leading and trailing dipole moments resulting in a transient potential difference across the quadrupole as recorded with a far-field recording montage. The potential difference produced by the asymmetric electric field between the leading and trailing dipoles recorded distantly in areas of low potential gradient is the so-called far-field potential. This investigation substantiates the utility of the leading/trailing dipole model of far-field production and offers a simple model of passive voltage distributions secondary to dipolar moment imbalances to better understand the generation of far-field potentials in cylindrical volume conductors.

Original languageEnglish (US)
Pages (from-to)421-431
Number of pages11
JournalElectroencephalography and Clinical Neurophysiology/ Evoked Potentials
Volume88
Issue number5
DOIs
StatePublished - 1993
Externally publishedYes

Fingerprint

Action Potentials
Hand

Keywords

  • Dipoles
  • Electrodiagnosis
  • Evoked potentials
  • Far-field potentials
  • Volume conduction

ASJC Scopus subject areas

  • Clinical Neurology
  • Neuroscience(all)

Cite this

@article{e6f31b72563b4f9bb43d31f30a5288d6,
title = "Far-field potential production by quadrupole generators in cylindrical volume conductors",
abstract = "Far-field potentials have been observed clinically and recognized as such for approximately 30 years. Unfortunately a complete understanding of far-field potential generation is not yet at hand. An attractive model is the representation of an action potential by a quadrupole consisting of a leading and trailing dipole with respect to the direction of propagation. This investigation physically models an action potential by using a quadrupole constant current source and substantiates the concept that an action potential as modeled by two dipoles back-to-back is capable of producing far-field potentials in cylindrical volume conductors. The 4 postulated mechanisms of generating far-field potentials are validated, i.e., an action potential encountering (1) different size volume conductors, (2) the termination of excitable tissue, (3) a change in conducting medium conductivity, and (4) a bend in the nerve. A fifth postulated but previously not demonstrated method of far-field production, neural branching, is shown by the quadrupole model to also be capable of yielding far-field potentials. The termination of a volume conductor is also shown to be capable of generating a voltage difference across the quadrupole. Any of the above 6 conditions create an alteration in the symmetry of the leading and trailing dipole moments resulting in a transient potential difference across the quadrupole as recorded with a far-field recording montage. The potential difference produced by the asymmetric electric field between the leading and trailing dipoles recorded distantly in areas of low potential gradient is the so-called far-field potential. This investigation substantiates the utility of the leading/trailing dipole model of far-field production and offers a simple model of passive voltage distributions secondary to dipolar moment imbalances to better understand the generation of far-field potentials in cylindrical volume conductors.",
keywords = "Dipoles, Electrodiagnosis, Evoked potentials, Far-field potentials, Volume conduction",
author = "Daniel Dumitru and King, {John C.}",
year = "1993",
doi = "10.1016/0168-5597(93)90018-K",
language = "English (US)",
volume = "88",
pages = "421--431",
journal = "Electroencephalography and Clinical Neurophysiology - Evoked Potentials",
issn = "0168-5597",
publisher = "Elsevier BV",
number = "5",

}

TY - JOUR

T1 - Far-field potential production by quadrupole generators in cylindrical volume conductors

AU - Dumitru, Daniel

AU - King, John C.

PY - 1993

Y1 - 1993

N2 - Far-field potentials have been observed clinically and recognized as such for approximately 30 years. Unfortunately a complete understanding of far-field potential generation is not yet at hand. An attractive model is the representation of an action potential by a quadrupole consisting of a leading and trailing dipole with respect to the direction of propagation. This investigation physically models an action potential by using a quadrupole constant current source and substantiates the concept that an action potential as modeled by two dipoles back-to-back is capable of producing far-field potentials in cylindrical volume conductors. The 4 postulated mechanisms of generating far-field potentials are validated, i.e., an action potential encountering (1) different size volume conductors, (2) the termination of excitable tissue, (3) a change in conducting medium conductivity, and (4) a bend in the nerve. A fifth postulated but previously not demonstrated method of far-field production, neural branching, is shown by the quadrupole model to also be capable of yielding far-field potentials. The termination of a volume conductor is also shown to be capable of generating a voltage difference across the quadrupole. Any of the above 6 conditions create an alteration in the symmetry of the leading and trailing dipole moments resulting in a transient potential difference across the quadrupole as recorded with a far-field recording montage. The potential difference produced by the asymmetric electric field between the leading and trailing dipoles recorded distantly in areas of low potential gradient is the so-called far-field potential. This investigation substantiates the utility of the leading/trailing dipole model of far-field production and offers a simple model of passive voltage distributions secondary to dipolar moment imbalances to better understand the generation of far-field potentials in cylindrical volume conductors.

AB - Far-field potentials have been observed clinically and recognized as such for approximately 30 years. Unfortunately a complete understanding of far-field potential generation is not yet at hand. An attractive model is the representation of an action potential by a quadrupole consisting of a leading and trailing dipole with respect to the direction of propagation. This investigation physically models an action potential by using a quadrupole constant current source and substantiates the concept that an action potential as modeled by two dipoles back-to-back is capable of producing far-field potentials in cylindrical volume conductors. The 4 postulated mechanisms of generating far-field potentials are validated, i.e., an action potential encountering (1) different size volume conductors, (2) the termination of excitable tissue, (3) a change in conducting medium conductivity, and (4) a bend in the nerve. A fifth postulated but previously not demonstrated method of far-field production, neural branching, is shown by the quadrupole model to also be capable of yielding far-field potentials. The termination of a volume conductor is also shown to be capable of generating a voltage difference across the quadrupole. Any of the above 6 conditions create an alteration in the symmetry of the leading and trailing dipole moments resulting in a transient potential difference across the quadrupole as recorded with a far-field recording montage. The potential difference produced by the asymmetric electric field between the leading and trailing dipoles recorded distantly in areas of low potential gradient is the so-called far-field potential. This investigation substantiates the utility of the leading/trailing dipole model of far-field production and offers a simple model of passive voltage distributions secondary to dipolar moment imbalances to better understand the generation of far-field potentials in cylindrical volume conductors.

KW - Dipoles

KW - Electrodiagnosis

KW - Evoked potentials

KW - Far-field potentials

KW - Volume conduction

UR - http://www.scopus.com/inward/record.url?scp=0027183603&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027183603&partnerID=8YFLogxK

U2 - 10.1016/0168-5597(93)90018-K

DO - 10.1016/0168-5597(93)90018-K

M3 - Article

C2 - 7691566

AN - SCOPUS:0027183603

VL - 88

SP - 421

EP - 431

JO - Electroencephalography and Clinical Neurophysiology - Evoked Potentials

JF - Electroencephalography and Clinical Neurophysiology - Evoked Potentials

SN - 0168-5597

IS - 5

ER -