TY - JOUR
T1 - Evasion of IFN-γ signaling by Francisella novicida is dependent upon Francisella outer membrane protein C
AU - Nallaparaju, Kalyan C.
AU - Yu, Jieh Juen
AU - Rodriguez, Stephen A.
AU - Zogaj, Xhavit
AU - Manam, Srikanth
AU - Guentzel, M. Neal
AU - Seshu, Janakiram
AU - Murthy, Ashlesh K.
AU - Chambers, James P.
AU - Klose, Karl E.
AU - Arulanandam, Bernard P.
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2011
Y1 - 2011
N2 - Background: Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918. Methods and Findings: The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and μmT (B cell deficient), but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed. Conclusions: F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components.
AB - Background: Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918. Methods and Findings: The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and μmT (B cell deficient), but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed. Conclusions: F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components.
UR - http://www.scopus.com/inward/record.url?scp=79953671494&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79953671494&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0018201
DO - 10.1371/journal.pone.0018201
M3 - Article
C2 - 21483828
AN - SCOPUS:79953671494
VL - 6
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 3
M1 - e18201
ER -