Epithelial Na+ channel subunit stoichiometry

Alexander Staruschenko, Emily Adams, Rachell E. Booth, James D. Stockand

Research output: Contribution to journalArticlepeer-review

96 Scopus citations

Abstract

Ion channels, including the epithelial Na+ channel (ENaC), are intrinsic membrane proteins comprised of component subunits. Proper subunit assembly and stoichiometry are essential for normal physiological function of the channel protein. ENaC comprises three subunits, α, β, and γ, that have common tertiary structures and much amino acid sequence identity. For maximal ENaC activity, each subunit is required. The subunit stoichiometry of functional ENaC within the membrane remains uncertain. We combined a biophysical approach, fluorescence intensity ratio analysis, used to assess relative subunit stoichiometry with total internal reflection fluorescence microscopy, which enables isolation of plasma membrane fluorescence signals, to determine the limiting subunit stoichiometry of ENaC within the plasma membrane. Our results demonstrate that membrane ENaC contains equal numbers of each type of subunit and that at steady state, subunit stoichiometry is fixed. Moreover, we find that when all three ENaC subunits are coexpressed, heteromeric channel formation is favored over homomeric channels. Electrophysiological results testing effects of ENaC subunit dose on channel activity were consistent with total internal reflection fluorescence/ fluorescence intensity ratio findings and confirmed preferential formation of heteromeric channels containing equal numbers of each subunit.

Original languageEnglish (US)
Pages (from-to)3966-3975
Number of pages10
JournalBiophysical Journal
Volume88
Issue number6
DOIs
StatePublished - Jun 2005

ASJC Scopus subject areas

  • Biophysics

Fingerprint

Dive into the research topics of 'Epithelial Na+ channel subunit stoichiometry'. Together they form a unique fingerprint.

Cite this