TY - JOUR
T1 - Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk
AU - Georgia Chenevix-Trench on behalf of the AOCS management group
AU - Georgia Chenevix-Trench on behalf of the AOCS management group
AU - Amankwah, Ernest K.
AU - Lin, Hui Yi
AU - Tyrer, Jonathan P.
AU - Lawrenson, Kate
AU - Dennis, Joe
AU - Chornokur, Ganna
AU - Aben, Katja K.H.
AU - Anton-Culver, Hoda
AU - Antonenkova, Natalia
AU - Bruinsma, Fiona
AU - Bandera, Elisa V.
AU - Bean, Yukie T.
AU - Beckmann, Matthias W.
AU - Bisogna, Maria
AU - Bjorge, Line
AU - Bogdanova, Natalia
AU - Brinton, Louise A.
AU - Brooks-Wilson, Angela
AU - Bunker, Clareann H.
AU - Butzow, Ralf
AU - Campbell, Ian G.
AU - Carty, Karen
AU - Chen, Zhihua
AU - Chen, Y. Ann
AU - Chang-Claude, Jenny
AU - Cook, Linda S.
AU - Cramer, Daniel W.
AU - Cunningham, Julie M.
AU - Cybulski, Cezary
AU - Dansonka-Mieszkowska, Agnieszka
AU - du Bois, Andreas
AU - Despierre, Evelyn
AU - Dicks, Ed
AU - Doherty, Jennifer A.
AU - Dörk, Thilo
AU - Dürst, Matthias
AU - Easton, Douglas F.
AU - Eccles, Diana M.
AU - Edwards, Robert P.
AU - Ekici, Arif B.
AU - Fasching, Peter A.
AU - Fridley, Brooke L.
AU - Gao, Yu Tang
AU - Gentry-Maharaj, Aleksandra
AU - Giles, Graham G.
AU - Glasspool, Rosalind
AU - Goodman, Marc T.
AU - Gronwald, Jacek
AU - Harrington, Patricia
AU - Gayther, Simon A.
N1 - Publisher Copyright:
© 2015 Wiley Periodicals, Inc.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.
AB - Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.
KW - Epithelial-mesenchymal transition
KW - Ovarian cancer
KW - Single-nucleotide polymorphisms
UR - http://www.scopus.com/inward/record.url?scp=84954383951&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954383951&partnerID=8YFLogxK
U2 - 10.1002/gepi.21921
DO - 10.1002/gepi.21921
M3 - Article
C2 - 26399219
AN - SCOPUS:84954383951
SN - 0741-0395
VL - 39
SP - 689
EP - 697
JO - Genetic epidemiology
JF - Genetic epidemiology
IS - 8
ER -