Abstract
Critical-sized defects (CSDs) were introduced into rat calvaria to test the hypothesis that absorption of surrounding blood, marrow, and fluid from the osseous wound into a bioabsorbable polymer matrix with unique microarchitecture can induce bone formation via hematoma stabilization. Scaffolds with 90% porosity, specific surface areas of approximately 10 m2/g, and median pore sizes of 16 and 32 μm, respectively, were fabricated using an emulsion freeze-drying process. Contact radiography and radiomorphometry revealed the size of the initial defects (50 mm2) were reduced to 27 ± 11 mm2 and 34 ± 17 mm2 for CSDs treated with poly(D,L- lactide-co-glycolide). Histology and histomorphometry revealed scaffolds filled with significantly more de novo bone than negative controls (p < 0.007), more osteoid than both the negative and autograft controls (p < 0.002), and small masses of mineralized tissue (<15 μm in diameter) observed within the scaffolds. Based on these findings, we propose a change in the current paradigm regarding the microarchitecture of scaffolds for in vivo bone regeneration to include mechanisms based on hematoma stabilization.
Original language | English (US) |
---|---|
Pages (from-to) | 35-51 |
Number of pages | 17 |
Journal | Tissue Engineering |
Volume | 5 |
Issue number | 1 |
DOIs | |
State | Published - 1999 |
Externally published | Yes |
ASJC Scopus subject areas
- Biotechnology
- Biophysics
- Cell Biology