Abstract
Previous studies have demonstrated the presence of nerve growth factor receptor [NGFr(p75)]-immunoreactivity (IR) in the spinal trigeminal nucleus of both 8-10 week-old kittens and mature cats. Most of the NGFr(p75)-IR is lost following retrogasserian rhizotomy, indicating that the majority of the NGFr(p75)-IR within the spinal trigeminal nucleus is of trigeminal primary afferent origin. Here, we examined the ultrastructural localization of NGFr(p75)-IR within lamina II outer of pars caudalis/medullary dorsal horn in the mature cat. Lamina II outer represents a location where dense NGFr(p75)-IR is seen with the light microscope. The NGFr(p75)-IR identified with the electron microscope was located within small thinly myelinated and unmyelinated axons and within axon terminals. The terminals with NGFr(p75)-IR typically formed asymmetric synaptic specializations onto dendritic profiles and at times were postsynaptic to other axon terminals at symmetric synaptic specializations. The terminals with NGFr(p75)-IR were either simple (associated with a single profile) or more complex, such as those that typically formed the central element in synaptic glomeruli. The NGFr(p75)-IR in terminals was especially prominent on microtubules and the plasmalemma and these findings are consistent with proposed roles for NGFr(p75) in axoplasmic/neuronal transport and as a membrane protein, respectively. The profiles with NGFr(p75)-IR seen with the electron microscope indicate a primary afferent origin and show some similarities when compared to other markers of primary afferent fibers such as calcitonin gene-related peptide. In addition, a possible role for NGFr(p75) in the transmission of nociceptive stimuli is also discussed.
Original language | English (US) |
---|---|
Pages (from-to) | 137-145 |
Number of pages | 9 |
Journal | Brain Research |
Volume | 642 |
Issue number | 1-2 |
DOIs | |
State | Published - Apr 11 1994 |
Keywords
- Glomerulus
- Immunocytochemistry
- Neurotrophin
- Primary afferent
- Trigeminal
- Ultrastructure
ASJC Scopus subject areas
- Neuroscience(all)
- Molecular Biology
- Clinical Neurology
- Developmental Biology