TY - JOUR
T1 - Effect of 1α,25-dihydroxyvitamin D3 and 24R,25-dihydroxyvitamin D3 on metalloproteinase activity and cell maturation in growth plate cartilage in vivo
AU - Dean, David D.
AU - Boyan, Barbara D.
AU - Schwartz, Zvi
AU - Muniz, Ofelia E.
AU - Carreno, Manuel R.
AU - Maeda, Shingo
AU - Howell, David S.
N1 - Funding Information:
We wish to acknowledge the skilled technical assistance of Sara Morales and Agueda Agundez, as well as the skilled secretarial assistance of Sandra Messier. This research was supported by National Institutes of Health grants AR-08662, DE-08603, and DE-05937, and the Department of Veterans Affairs.
PY - 2001
Y1 - 2001
N2 - Recent studies indicate that 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3) and 24R,25-dihydroxyvitamim D3 (24R,25[OH]2D3) differentially regulate proliferation, differentiation, and matrix synthesis of growth plate chondrocytes. To determine whether both metabolites play the same or different roles in vivo, we used the vitamin D-deficient rat as a model. Rickets was induced and then reversed by administering a single dose of ergocalciferol, 1α,25(OH)2D3, or 24R,25(OH)2D3 and euthanizing the animals after 4, 24, 48, or 72 h. Growth plates were either processed for histology and histomorphometry or extracted with buffered guanidine-HCl. Neutral metalloproteinase activity in the extracts was measured by use of aggrecan-containing beads, and collagenase activity was determined by use of radioactive type I collagen. The levels of tissue inhibitor of metalloproteinases (TIMP) and plasminogen activator were also determined. The morphology of the growth plate varied as a function of treatment. While 24R,25(OH)2D3 appeared to affect cell maturation and 1α,25(OH)2D3 appeared to affect terminal differentiation and calcification, response to ergocalciferol was indicative of the combined responses to the individual metabolites. Enzyme activity was regulated in a differential manner. Treatment with ergocalciferol produced a rapid decline in both neutral metalloproteinase and collagenase activities that was statistically significant by 4 h. By contrast, 1α,25(OH)2D3 had no effect on neutral metalloproteinase activity but caused a significant decrease in both active and total collagenase activity by 4 h, while 24R,25(OH)2D3 decreased neutral metalloproteinase activity by 48 h and had no effect on collagenase activity. Ergocalciferol had no effect on TIMP levels at any time examined, whereas 1α,25(OH)2D3 caused an increase at 48 and 72 h and 24R,25(OH)2D3 completely blocked TIMP production at 4 and 24 h. By contrast, plasminogen activator activity by ergocalciferol was decreased at 4 h, increased by 1α,25(OH)2D3 at 4 and 24 h, and decreased by 24R,25(OH)2D3 at all time points examined. These in vivo results confirm our previous cell culture observations showing that growth plate chondrocytes are differentially regulated by 1α,25(OH)2D3 and 24R,25(OH)2D3. Moreover, they show definitively that these two vitamin D metabolites play distinct roles not only in regulating neutral metalloproteinase and collagenase activities in growth plate cartilage but in cell maturation and calcification of this tissue in vivo.
AB - Recent studies indicate that 1α,25-dihydroxyvitamin D3 (1α,25[OH]2D3) and 24R,25-dihydroxyvitamim D3 (24R,25[OH]2D3) differentially regulate proliferation, differentiation, and matrix synthesis of growth plate chondrocytes. To determine whether both metabolites play the same or different roles in vivo, we used the vitamin D-deficient rat as a model. Rickets was induced and then reversed by administering a single dose of ergocalciferol, 1α,25(OH)2D3, or 24R,25(OH)2D3 and euthanizing the animals after 4, 24, 48, or 72 h. Growth plates were either processed for histology and histomorphometry or extracted with buffered guanidine-HCl. Neutral metalloproteinase activity in the extracts was measured by use of aggrecan-containing beads, and collagenase activity was determined by use of radioactive type I collagen. The levels of tissue inhibitor of metalloproteinases (TIMP) and plasminogen activator were also determined. The morphology of the growth plate varied as a function of treatment. While 24R,25(OH)2D3 appeared to affect cell maturation and 1α,25(OH)2D3 appeared to affect terminal differentiation and calcification, response to ergocalciferol was indicative of the combined responses to the individual metabolites. Enzyme activity was regulated in a differential manner. Treatment with ergocalciferol produced a rapid decline in both neutral metalloproteinase and collagenase activities that was statistically significant by 4 h. By contrast, 1α,25(OH)2D3 had no effect on neutral metalloproteinase activity but caused a significant decrease in both active and total collagenase activity by 4 h, while 24R,25(OH)2D3 decreased neutral metalloproteinase activity by 48 h and had no effect on collagenase activity. Ergocalciferol had no effect on TIMP levels at any time examined, whereas 1α,25(OH)2D3 caused an increase at 48 and 72 h and 24R,25(OH)2D3 completely blocked TIMP production at 4 and 24 h. By contrast, plasminogen activator activity by ergocalciferol was decreased at 4 h, increased by 1α,25(OH)2D3 at 4 and 24 h, and decreased by 24R,25(OH)2D3 at all time points examined. These in vivo results confirm our previous cell culture observations showing that growth plate chondrocytes are differentially regulated by 1α,25(OH)2D3 and 24R,25(OH)2D3. Moreover, they show definitively that these two vitamin D metabolites play distinct roles not only in regulating neutral metalloproteinase and collagenase activities in growth plate cartilage but in cell maturation and calcification of this tissue in vivo.
KW - Endochondral ossification
KW - Metalloproteinase
KW - Tissue inhibitor of metalloproteinases
UR - http://www.scopus.com/inward/record.url?scp=0034743566&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034743566&partnerID=8YFLogxK
U2 - 10.1385/ENDO:14:3:311
DO - 10.1385/ENDO:14:3:311
M3 - Article
C2 - 11444427
AN - SCOPUS:0034743566
SN - 1355-008X
VL - 14
SP - 311
EP - 323
JO - Endocrine
JF - Endocrine
IS - 3
ER -