TY - JOUR
T1 - DyScore
T2 - A Boosting Scoring Method with Dynamic Properties for Identifying True Binders and Nonbinders in Structure-Based Drug Discovery
AU - Li, Yanjun
AU - Zhou, Daohong
AU - Zheng, Guangrong
AU - Li, Xiaolin
AU - Wu, Dapeng
AU - Yuan, Yaxia
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/11/28
Y1 - 2022/11/28
N2 - The accurate prediction of protein-ligand binding affinity is critical for the success of computer-aided drug discovery. However, the accuracy of current scoring functions is usually unsatisfactory due to their rough approximation or sometimes even omittance of many factors involved in protein-ligand binding. For instance, the intrinsic dynamics of the protein-ligand binding state is usually disregarded in scoring function because these rapid binding affinity prediction approaches are only based on a representative complex structure of the protein and ligand in the binding state. That is, the dynamic protein-ligand binding complex ensembles are simplified as a static snapshot in calculation. In this study, two novel features were proposed for characterizing the dynamic properties of protein-ligand binding based on the static structure of the complex, which is expected to be a valuable complement to the current scoring functions. The two features demonstrate the geometry-shape matching between a protein and a ligand as well as the dynamic stability of protein-ligand binding. We further combined these two novel features with several classical scoring functions to develop a binary classification model called DyScore that uses the Extreme Gradient Boosting algorithm to classify compound poses as binders or non-binders. We have found that DyScore achieves state-of-the-art performance in distinguishing active and decoy ligands on both enhanced DUD data set and external test sets with both proposed novel features showing significant contributions to the improved performance. Especially, DyScore exhibits superior performance on early recognition, a crucial requirement for success in virtual screening and de novo drug design. The standalone version of DyScore and Dyscore-MF are freely available to all at: https://github.com/YanjunLi-CS/dyscore.
AB - The accurate prediction of protein-ligand binding affinity is critical for the success of computer-aided drug discovery. However, the accuracy of current scoring functions is usually unsatisfactory due to their rough approximation or sometimes even omittance of many factors involved in protein-ligand binding. For instance, the intrinsic dynamics of the protein-ligand binding state is usually disregarded in scoring function because these rapid binding affinity prediction approaches are only based on a representative complex structure of the protein and ligand in the binding state. That is, the dynamic protein-ligand binding complex ensembles are simplified as a static snapshot in calculation. In this study, two novel features were proposed for characterizing the dynamic properties of protein-ligand binding based on the static structure of the complex, which is expected to be a valuable complement to the current scoring functions. The two features demonstrate the geometry-shape matching between a protein and a ligand as well as the dynamic stability of protein-ligand binding. We further combined these two novel features with several classical scoring functions to develop a binary classification model called DyScore that uses the Extreme Gradient Boosting algorithm to classify compound poses as binders or non-binders. We have found that DyScore achieves state-of-the-art performance in distinguishing active and decoy ligands on both enhanced DUD data set and external test sets with both proposed novel features showing significant contributions to the improved performance. Especially, DyScore exhibits superior performance on early recognition, a crucial requirement for success in virtual screening and de novo drug design. The standalone version of DyScore and Dyscore-MF are freely available to all at: https://github.com/YanjunLi-CS/dyscore.
UR - http://www.scopus.com/inward/record.url?scp=85141683091&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141683091&partnerID=8YFLogxK
U2 - 10.1021/acs.jcim.2c00926
DO - 10.1021/acs.jcim.2c00926
M3 - Article
C2 - 36327102
AN - SCOPUS:85141683091
SN - 1549-9596
VL - 62
SP - 5550
EP - 5567
JO - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
IS - 22
ER -