Abstract
Regulator of G-protein signaling 9-2 (RGS9-2), a member of the RGS family of Gα GTPase accelerating proteins, is expressed specifically in the striatum, which participates in antipsychotic-induced tardive dyskinesia and in levodopa-induced dyskinesia. We report that RGS9 knock-out mice develop abnormal involuntary movements when inhibition of dopaminergic transmission is followed by activation of D2-like dopamine receptors (DRs). These abnormal movements resemble drug-induced dyskinesia more closely than other rodent models. Recordings from striatal neurons of these mice establish that activation of D2-like DRs abnormally inhibits glutamate-elicited currents. We show that RGS9-2, via its DEP domain (for Disheveled, EGL-10, Pleckstrin homology), colocalizes with D2DRs when coexpressed in mammalian cells. Recordings from oocytes coexpressing D2DR or the m2 muscarinic receptor and G-protein-gated inward rectifier potassium channels show that RGS9-2, via its DEP domain, preferentially accelerates the termination of D 2DR signals. Thus, alterations in RGS9-2 may be a key factor in the pathway leading from D2DRs to the side effects associated with the treatment both of psychoses and Parkinson's disease.
Original language | English (US) |
---|---|
Pages (from-to) | 2157-2165 |
Number of pages | 9 |
Journal | Journal of Neuroscience |
Volume | 25 |
Issue number | 8 |
DOIs | |
State | Published - Feb 23 2005 |
Externally published | Yes |
Keywords
- Antipsychotic
- D dopamine receptor
- DEP domain
- Dyskinesia
- RGS9
- Striatum
ASJC Scopus subject areas
- General Neuroscience