Abstract
Relatively little is understood concerning the mechanisms by which types of receptors, G proteins and effector enzymes interact to transduce specific signals. Through expression of normal, hybrid and deletion mutant receptors in Xenopus oocytes, we determined the G protein coupling characteristics of the functionally distinct m2 and m3 muscarinic acetylcholine receptor (mAChR) subtypes and identified the critical receptor sequences responsible for G protein specificity. Activation of a pertussis toxin insensitive G protein pathway, leading to a rapid and transient release of intracellular Ca2+ characteristic of the m3 receptor, could be specified by the transfer of as few as nine amino acids from the m3 to the m2 receptor. In a reciprocal manner, transfer of no more than 21 residues from the m2 to the m3 receptor was sufficient to specify activation of a pertussis toxin sensitive G protein coupled to a slow and oscillatory Ca2+ release pathway typical of the m2 subtype. Notably, these critical residues occur within the same region of the third cytoplasmic domain of functionally distinct mAChR subtypes.
Original language | English (US) |
---|---|
Pages (from-to) | 4381-4390 |
Number of pages | 10 |
Journal | EMBO Journal |
Volume | 9 |
Issue number | 13 |
DOIs | |
State | Published - 1990 |
Externally published | Yes |
Keywords
- G protein selectivity
- ion channels
- muscarinic receptors
ASJC Scopus subject areas
- Neuroscience(all)
- Molecular Biology
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)