TY - JOUR
T1 - Diffusion in musculoskeletal tissue engineering scaffolds
T2 - Design issues related to porosity, permeability, architecture, and nutrient mixing
AU - Karande, Tejas S.
AU - Ong, Joo L.
AU - Agrawal, C. Mauli
PY - 2004/12
Y1 - 2004/12
N2 - The field of tissue engineering continues to advance with the discovery of new biomaterials, growth factors and scaffold fabrication techniques. However, for the ultimate success of a tissue engineered construct the issue of nutrient transport to the scaffold interior needs to be addressed. Often, the requirements for adequate nutrient supply are at odds with other scaffold design parameters such as mechanical properties as well as scaffold fabrication techniques, leading to incongruities in finding optimal solutions. The goal of this review article is to provide an overview of the various engineering design factors that promote movement of nutrients, waste and other biomolecules in scaffolds for musculoskeletal tissue engineering applications. The importance of diffusion in scaffolds and how it is influenced by porosity, permeability, architecture, and nutrient mixing has been emphasized. Methods for measuring porosity and permeability have also been outlined. The different types of biomaterials used, scaffold fabrication techniques implemented and the pore sizes/porosities obtained over the past 5 years have also been addressed.
AB - The field of tissue engineering continues to advance with the discovery of new biomaterials, growth factors and scaffold fabrication techniques. However, for the ultimate success of a tissue engineered construct the issue of nutrient transport to the scaffold interior needs to be addressed. Often, the requirements for adequate nutrient supply are at odds with other scaffold design parameters such as mechanical properties as well as scaffold fabrication techniques, leading to incongruities in finding optimal solutions. The goal of this review article is to provide an overview of the various engineering design factors that promote movement of nutrients, waste and other biomolecules in scaffolds for musculoskeletal tissue engineering applications. The importance of diffusion in scaffolds and how it is influenced by porosity, permeability, architecture, and nutrient mixing has been emphasized. Methods for measuring porosity and permeability have also been outlined. The different types of biomaterials used, scaffold fabrication techniques implemented and the pore sizes/porosities obtained over the past 5 years have also been addressed.
KW - Nutrient transport
KW - Pore interconnectivity
KW - Scaffold fabrication techniques
UR - http://www.scopus.com/inward/record.url?scp=12344282814&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=12344282814&partnerID=8YFLogxK
U2 - 10.1007/s10439-004-7825-2
DO - 10.1007/s10439-004-7825-2
M3 - Article
C2 - 15675684
AN - SCOPUS:12344282814
SN - 0090-6964
VL - 32
SP - 1728
EP - 1743
JO - Annals of Biomedical Engineering
JF - Annals of Biomedical Engineering
IS - 12
ER -