Differential responsiveness of protein synthesis and degradation to amino acid availability in humans

Mauro Giordano, Pietro Castellino, Ralph A Defronzo

Research output: Contribution to journalArticle

61 Citations (Scopus)

Abstract

We investigated the effects of graded hyperaminoacidemia on protein metabolism in eight healthy, young (25 ± 2 years), normal weight (BMI = 25 ± 1 kg/m2), overnight-fasted human subjects. A balanced amino acid solution was infused for 180 min at five different rates: 0.5 (study I), 1.0 (study II), 2.0 (study III), 4.0 (study IV), and 6.0 (study V) mg · kg-1 · min- 1 on separate days in random order. Studies were performed with [1- 14C]leucine infusion and indirect calorimetry to calculate leucine oxidation (LOX), nonoxidative leucine disposal (NOLD) (an index of protein synthesis), and endogenous leucine flux (ELF) (an index of proteolysis). Basal total plasma amino acid concentrations averaged 1.85 ± 0.1 mmol/l and increased to 2.27 ± 0.1, 2.70 ± 0.2, 3.84 ± 0.2, 5.87 ± 0.4, and 7.52 ± 0.3 mmol/l in studies I-V, respectively. ELF decreased from a basal value of 2.27 ± 0.2 to 2.12 ± 0.2, 1.97 ± 0.1, 1.73 ± 0.2, 1.67 ± 0.3, and 1.65 ± 0.1 μmol · kg-1 · min-1 in studies I-V, respectively (P < 0.05 for study I vs. basal, P < 0.01 for studies II-V vs. basal, and NS for studies IV and V vs. study III). LOX increased from a basal value of 0.31 ± 0.04 to 0.38 ± 0.05, 0.41 ± 0.02, 0.64 ± 0.04, 1.11 ± 0.07, and 1.56 ± 0.05 μmol · kg-1 · min-1 in studies I-V (all P < 0.01 vs. basal; P < 0.05- 0.01 for each study vs. preceding study). Basal NOLD averaged 1.96 ± 0.2 and did not change significantly in studies I and II (2.03 ± 0.2 and 2.10 ± 0.1 μmol · kg-1 · min-1). In contrast, a significant increase in NOLD was observed in studies III, IV, and V (to 2.3 ± 0.15, 2.74 ± 0.2, and 3.25 ± 0.7 μmol · kg-1 · min-1, respectively; all P < 0.01 vs. basal; P < 0.05-0.01 for each study vs. preceding study). The net leucine balance (difference between ELF and NOLD) (-0.31 ± 0.06 μmol · kg-1 · min-1) became less negative in study I (P < 0.01 vs. basal) and positive during studies II-V when the rise in plasma total amino acid levels was ≥50% above basal level (P < 0.01 vs. each preceding study). In conclusion, NOLD, ELF, and LOX exhibit a differential responsiveness to acute changes in substrate availability: 1) small increments (25-50%) in plasma amino acid levels inhibit ELF and stimulate LOX but have no effect on NOLD; 2) stimulation of NOLD is observed only with increments in plasma amino acid levels ≥100% above basal values; and 3) increments in plasma amino acid concentrations >100% above basal values cause a progressive dose-related increase in LOX and NOLD but do not induce any further inhibition of ELF.

Original languageEnglish (US)
Pages (from-to)393-399
Number of pages7
JournalDiabetes
Volume45
Issue number4
StatePublished - Apr 1996

Fingerprint

Leucine
Proteolysis
Amino Acids
Indirect Calorimetry
Proteins
Weights and Measures

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Cite this

Differential responsiveness of protein synthesis and degradation to amino acid availability in humans. / Giordano, Mauro; Castellino, Pietro; Defronzo, Ralph A.

In: Diabetes, Vol. 45, No. 4, 04.1996, p. 393-399.

Research output: Contribution to journalArticle

@article{78a2d4cc0252447b9a02ea0fd555ddf3,
title = "Differential responsiveness of protein synthesis and degradation to amino acid availability in humans",
abstract = "We investigated the effects of graded hyperaminoacidemia on protein metabolism in eight healthy, young (25 ± 2 years), normal weight (BMI = 25 ± 1 kg/m2), overnight-fasted human subjects. A balanced amino acid solution was infused for 180 min at five different rates: 0.5 (study I), 1.0 (study II), 2.0 (study III), 4.0 (study IV), and 6.0 (study V) mg · kg-1 · min- 1 on separate days in random order. Studies were performed with [1- 14C]leucine infusion and indirect calorimetry to calculate leucine oxidation (LOX), nonoxidative leucine disposal (NOLD) (an index of protein synthesis), and endogenous leucine flux (ELF) (an index of proteolysis). Basal total plasma amino acid concentrations averaged 1.85 ± 0.1 mmol/l and increased to 2.27 ± 0.1, 2.70 ± 0.2, 3.84 ± 0.2, 5.87 ± 0.4, and 7.52 ± 0.3 mmol/l in studies I-V, respectively. ELF decreased from a basal value of 2.27 ± 0.2 to 2.12 ± 0.2, 1.97 ± 0.1, 1.73 ± 0.2, 1.67 ± 0.3, and 1.65 ± 0.1 μmol · kg-1 · min-1 in studies I-V, respectively (P < 0.05 for study I vs. basal, P < 0.01 for studies II-V vs. basal, and NS for studies IV and V vs. study III). LOX increased from a basal value of 0.31 ± 0.04 to 0.38 ± 0.05, 0.41 ± 0.02, 0.64 ± 0.04, 1.11 ± 0.07, and 1.56 ± 0.05 μmol · kg-1 · min-1 in studies I-V (all P < 0.01 vs. basal; P < 0.05- 0.01 for each study vs. preceding study). Basal NOLD averaged 1.96 ± 0.2 and did not change significantly in studies I and II (2.03 ± 0.2 and 2.10 ± 0.1 μmol · kg-1 · min-1). In contrast, a significant increase in NOLD was observed in studies III, IV, and V (to 2.3 ± 0.15, 2.74 ± 0.2, and 3.25 ± 0.7 μmol · kg-1 · min-1, respectively; all P < 0.01 vs. basal; P < 0.05-0.01 for each study vs. preceding study). The net leucine balance (difference between ELF and NOLD) (-0.31 ± 0.06 μmol · kg-1 · min-1) became less negative in study I (P < 0.01 vs. basal) and positive during studies II-V when the rise in plasma total amino acid levels was ≥50{\%} above basal level (P < 0.01 vs. each preceding study). In conclusion, NOLD, ELF, and LOX exhibit a differential responsiveness to acute changes in substrate availability: 1) small increments (25-50{\%}) in plasma amino acid levels inhibit ELF and stimulate LOX but have no effect on NOLD; 2) stimulation of NOLD is observed only with increments in plasma amino acid levels ≥100{\%} above basal values; and 3) increments in plasma amino acid concentrations >100{\%} above basal values cause a progressive dose-related increase in LOX and NOLD but do not induce any further inhibition of ELF.",
author = "Mauro Giordano and Pietro Castellino and Defronzo, {Ralph A}",
year = "1996",
month = "4",
language = "English (US)",
volume = "45",
pages = "393--399",
journal = "Diabetes",
issn = "0012-1797",
publisher = "American Diabetes Association Inc.",
number = "4",

}

TY - JOUR

T1 - Differential responsiveness of protein synthesis and degradation to amino acid availability in humans

AU - Giordano, Mauro

AU - Castellino, Pietro

AU - Defronzo, Ralph A

PY - 1996/4

Y1 - 1996/4

N2 - We investigated the effects of graded hyperaminoacidemia on protein metabolism in eight healthy, young (25 ± 2 years), normal weight (BMI = 25 ± 1 kg/m2), overnight-fasted human subjects. A balanced amino acid solution was infused for 180 min at five different rates: 0.5 (study I), 1.0 (study II), 2.0 (study III), 4.0 (study IV), and 6.0 (study V) mg · kg-1 · min- 1 on separate days in random order. Studies were performed with [1- 14C]leucine infusion and indirect calorimetry to calculate leucine oxidation (LOX), nonoxidative leucine disposal (NOLD) (an index of protein synthesis), and endogenous leucine flux (ELF) (an index of proteolysis). Basal total plasma amino acid concentrations averaged 1.85 ± 0.1 mmol/l and increased to 2.27 ± 0.1, 2.70 ± 0.2, 3.84 ± 0.2, 5.87 ± 0.4, and 7.52 ± 0.3 mmol/l in studies I-V, respectively. ELF decreased from a basal value of 2.27 ± 0.2 to 2.12 ± 0.2, 1.97 ± 0.1, 1.73 ± 0.2, 1.67 ± 0.3, and 1.65 ± 0.1 μmol · kg-1 · min-1 in studies I-V, respectively (P < 0.05 for study I vs. basal, P < 0.01 for studies II-V vs. basal, and NS for studies IV and V vs. study III). LOX increased from a basal value of 0.31 ± 0.04 to 0.38 ± 0.05, 0.41 ± 0.02, 0.64 ± 0.04, 1.11 ± 0.07, and 1.56 ± 0.05 μmol · kg-1 · min-1 in studies I-V (all P < 0.01 vs. basal; P < 0.05- 0.01 for each study vs. preceding study). Basal NOLD averaged 1.96 ± 0.2 and did not change significantly in studies I and II (2.03 ± 0.2 and 2.10 ± 0.1 μmol · kg-1 · min-1). In contrast, a significant increase in NOLD was observed in studies III, IV, and V (to 2.3 ± 0.15, 2.74 ± 0.2, and 3.25 ± 0.7 μmol · kg-1 · min-1, respectively; all P < 0.01 vs. basal; P < 0.05-0.01 for each study vs. preceding study). The net leucine balance (difference between ELF and NOLD) (-0.31 ± 0.06 μmol · kg-1 · min-1) became less negative in study I (P < 0.01 vs. basal) and positive during studies II-V when the rise in plasma total amino acid levels was ≥50% above basal level (P < 0.01 vs. each preceding study). In conclusion, NOLD, ELF, and LOX exhibit a differential responsiveness to acute changes in substrate availability: 1) small increments (25-50%) in plasma amino acid levels inhibit ELF and stimulate LOX but have no effect on NOLD; 2) stimulation of NOLD is observed only with increments in plasma amino acid levels ≥100% above basal values; and 3) increments in plasma amino acid concentrations >100% above basal values cause a progressive dose-related increase in LOX and NOLD but do not induce any further inhibition of ELF.

AB - We investigated the effects of graded hyperaminoacidemia on protein metabolism in eight healthy, young (25 ± 2 years), normal weight (BMI = 25 ± 1 kg/m2), overnight-fasted human subjects. A balanced amino acid solution was infused for 180 min at five different rates: 0.5 (study I), 1.0 (study II), 2.0 (study III), 4.0 (study IV), and 6.0 (study V) mg · kg-1 · min- 1 on separate days in random order. Studies were performed with [1- 14C]leucine infusion and indirect calorimetry to calculate leucine oxidation (LOX), nonoxidative leucine disposal (NOLD) (an index of protein synthesis), and endogenous leucine flux (ELF) (an index of proteolysis). Basal total plasma amino acid concentrations averaged 1.85 ± 0.1 mmol/l and increased to 2.27 ± 0.1, 2.70 ± 0.2, 3.84 ± 0.2, 5.87 ± 0.4, and 7.52 ± 0.3 mmol/l in studies I-V, respectively. ELF decreased from a basal value of 2.27 ± 0.2 to 2.12 ± 0.2, 1.97 ± 0.1, 1.73 ± 0.2, 1.67 ± 0.3, and 1.65 ± 0.1 μmol · kg-1 · min-1 in studies I-V, respectively (P < 0.05 for study I vs. basal, P < 0.01 for studies II-V vs. basal, and NS for studies IV and V vs. study III). LOX increased from a basal value of 0.31 ± 0.04 to 0.38 ± 0.05, 0.41 ± 0.02, 0.64 ± 0.04, 1.11 ± 0.07, and 1.56 ± 0.05 μmol · kg-1 · min-1 in studies I-V (all P < 0.01 vs. basal; P < 0.05- 0.01 for each study vs. preceding study). Basal NOLD averaged 1.96 ± 0.2 and did not change significantly in studies I and II (2.03 ± 0.2 and 2.10 ± 0.1 μmol · kg-1 · min-1). In contrast, a significant increase in NOLD was observed in studies III, IV, and V (to 2.3 ± 0.15, 2.74 ± 0.2, and 3.25 ± 0.7 μmol · kg-1 · min-1, respectively; all P < 0.01 vs. basal; P < 0.05-0.01 for each study vs. preceding study). The net leucine balance (difference between ELF and NOLD) (-0.31 ± 0.06 μmol · kg-1 · min-1) became less negative in study I (P < 0.01 vs. basal) and positive during studies II-V when the rise in plasma total amino acid levels was ≥50% above basal level (P < 0.01 vs. each preceding study). In conclusion, NOLD, ELF, and LOX exhibit a differential responsiveness to acute changes in substrate availability: 1) small increments (25-50%) in plasma amino acid levels inhibit ELF and stimulate LOX but have no effect on NOLD; 2) stimulation of NOLD is observed only with increments in plasma amino acid levels ≥100% above basal values; and 3) increments in plasma amino acid concentrations >100% above basal values cause a progressive dose-related increase in LOX and NOLD but do not induce any further inhibition of ELF.

UR - http://www.scopus.com/inward/record.url?scp=0029933506&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029933506&partnerID=8YFLogxK

M3 - Article

VL - 45

SP - 393

EP - 399

JO - Diabetes

JF - Diabetes

SN - 0012-1797

IS - 4

ER -