Differential activation of intracellular versus plasmalemmal CB2 Cannabinoid receptors

G. Cristina Brailoiu, Elena Deliu, Jahan Marcu, Nicholas E. Hoffman, Linda Console-Bram, Pingwei Zhao, Muniswamy Madesh, Mary E. Abood, Eugen Brailoiu

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

The therapeutic and psychoactive properties of cannabinoids have long been recognized. The type 2 receptor for cannabinoids (CB2) has emerged as an important therapeutic target in several pathologies, as it mediates beneficial effects of cannabinoids while having little if any psychotropic activity. Difficulties associated with the development of CB2-based therapeutic agents have been related to its intricate pharmacology, including the species specificity and functional selectivity of the CB2- initiated responses. We postulated that a plasmalemmal or subcellular location of the receptor may contribute to the differential signaling pathways initiated by its activation. To differentiate between these two, we used extracellular and intracellular administration of CB2 ligands and concurrent calcium imaging in CB2-expressing U2OS cells. We found that extracellular administration of anandamide was ineffective, whereas 2-arachidonoyl glycerol (2-AG) and WIN55,212-2 triggered delayed, CB2-dependent Ca 2+ responses that were Gq protein-mediated. When microinjected, allagonists elicited fast, transient, and dose-dependent elevations in intracellular Ca2+ concentration upon activation of Gq-coupled CB2 receptors. The CB2 dependency was confirmed by the sensitivity to AM630, a selective CB2antagonist, and by the unresponsiveness of untransfected U2OS cells to 2-AG, anandamide,or WIN55,212-2. Moreover, we provide functional and morphological evidence that CB2 receptors are localized at the endolysosomes, while their activation releases Ca2+ from inositol 1,4,5-trisphosphate-sensitive- and acidic-like Ca2+ stores. Our results support the functionality of intracellular CB2 receptors and their ability to couple to Gq and elicit Ca 2+ signaling. These findings add further complexity to CB2 receptor pharmacology and argue for careful consideration of receptor localization in the development of CB2-based therapeutic agents.

Original languageEnglish (US)
Pages (from-to)4990-4999
Number of pages10
JournalBiochemistry
Volume53
Issue number30
DOIs
StatePublished - Aug 5 2014
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry

Fingerprint

Dive into the research topics of 'Differential activation of intracellular versus plasmalemmal CB2 Cannabinoid receptors'. Together they form a unique fingerprint.

Cite this