Developmental expression of sodium entry pathways in rat nephron

Roland Schmitt, David H. Ellison, Nicolette Farman, Bernard C. Rossier, Robert F. Reilly, W. Brian Reeves, Ilse Oberbäumer, Rosemarie Tapp, Sebastian Bachmann

Research output: Contribution to journalArticlepeer-review

142 Scopus citations


During the past several years, sites of expression of ion transport proteins in tubules from adult kidneys have been described and correlated with functional properties. Less information is available concerning sites of expression during tubule morphogenesis, although such expression patterns may be crucial to renal development. In the current studies, patterns of renal axial differentiation were defined by mapping the expression of sodium transport pathways during nephrogenesis in the rat. Combined in situ hybridization and immunohistochemistry were used to localize the Na-P(i) cotransporter type 2 (NaPi2), the bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), the thiazide-sensitive Na-Cl cotransporter (NCC), the Na/Ca exchanger (NaCa), the epithelial sodium channel (rENaC), and 11β- hydroxysteroid dehydrogenase (11HSD). The onset of expression of these proteins began in post-S-shape stages. NKCC2 was initially expressed at the macula densa region and later extended into the nascent ascending limb of the loop of Henle (TAL), whereas differentiation of the proximal tubular part of the loop of Henle showed a comparatively retarded onset when probed for NaPi2. The NCC was initially found at the distal end of the nascent distal convoluted tubule (DCT) and later extended toward the junction with the TAL. After a period of changing proportions, subsegmentation of the DCT into a proximal part expressing NCC alone and a distal part expressing NCC together with NaCa was evident. Strong coexpression of rENaC and 11HSD was observed in early nascent connecting tubule (CNT) and collecting ducts and later also in the distal portion of the DCT. Ontogeny of the expression of NCC, NaCa, 11HSD, and rENaC in the late distal convolutions indicates a heterogenous origin of the CNT. These data present a detailed analysis of the relations between the anatomic differentiation of the developing renal tubule and the expression of tubular transport proteins.

Original languageEnglish (US)
Pages (from-to)F367-F381
JournalAmerican Journal of Physiology - Renal Physiology
Issue number3 45-3
StatePublished - Mar 1999
Externally publishedYes


  • Ion transport
  • Mineralo- corticoids
  • Nephrogenesis
  • Rat kidney
  • Tubular segmentation

ASJC Scopus subject areas

  • Physiology
  • Urology


Dive into the research topics of 'Developmental expression of sodium entry pathways in rat nephron'. Together they form a unique fingerprint.

Cite this