TY - JOUR
T1 - De novo transcriptome sequencing in a songbird, the dark-eyed junco (Junco hyemalis)
T2 - genomic tools for an ecological model system
AU - Peterson, Mark P.
AU - Whittaker, Danielle J.
AU - Ambreth, Shruthi
AU - Sureshchandra, Suhas
AU - Buechlein, Aaron
AU - Podicheti, Ram
AU - Choi, Jeong Hyeon
AU - Lai, Zhao
AU - Mockatis, Keithanne
AU - Colbourne, John
AU - Tang, Haixu
AU - Ketterson, Ellen D.
N1 - Funding Information:
The authors would like to thank Kimberly Rosvall and Sarah Wanamaker for help with animal handling for the microarray analysis, and gratefully acknowledge the expert technical contributions of Jacqueline Lopez, RNA preparation and microarray experiments, and James Ford and Zach Smith, transcriptome library preparation and sequencing. We also thank Baiju Parikh, at Roche NimbleGen for contributions to the CGB Ecological Genomics Pipeline. This material is based upon work supported by the National Science Foundation under Grant No. ACI-0338618 l, No. CNS-0521433, OCI-0451237, OCI-0535258, and OCI-0504075. This research was supported in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative of Indiana University is supported in part by Lilly Endowment, Inc. This work was supported in part by Shared University Research grants from IBM, Inc. to Indiana University. This work was further funded by Indiana University, and the National Science Foundation (IOS-0820055).
PY - 2012/7/9
Y1 - 2012/7/9
N2 - Background: Though genomic-level data are becoming widely available, many of the metazoan species sequenced are laboratory systems whose natural history is not well documented. In contrast, the wide array of species with very well-characterized natural history have, until recently, lacked genomics tools. It is now possible to address significant evolutionary genomics questions by applying high-throughput sequencing to discover the majority of genes for ecologically tractable species, and by subsequently developing microarray platforms from which to investigate gene regulatory networks that function in natural systems. We used GS-FLX Titanium Sequencing (Roche/454-Sequencing) of two normalized libraries of pooled RNA samples to characterize a transcriptome of the dark-eyed junco (Junco hyemalis), a North American sparrow that is a classically studied species in the fields of photoperiodism, speciation, and hormone-mediated behavior.Results: From a broad pool of RNA sampled from tissues throughout the body of a male and a female junco, we sequenced a total of 434 million nucleotides from 1.17 million reads that were assembled de novo into 31,379 putative transcripts representing 22,765 gene sets covering 35.8 million nucleotides with 12-fold average depth of coverage. Annotation of roughly half of the putative genes was accomplished using sequence similarity, and expression was confirmed for the majority with a preliminary microarray analysis. Of 716 core bilaterian genes, 646 (90 %) were recovered within our characterized gene set. Gene Ontology, orthoDB orthology groups, and KEGG Pathway annotation provide further functional information about the sequences, and 25,781 potential SNPs were identified.Conclusions: The extensive sequence information returned by this effort adds to the growing store of genomic data on diverse species. The extent of coverage and annotation achieved and confirmation of expression, show that transcriptome sequencing provides useful information for ecological model systems that have historically lacked genomic tools. The junco-specific microarray developed here is allowing investigations of gene expression responses to environmental and hormonal manipulations - extending the historic work on natural history and hormone-mediated phenotypes in this system.
AB - Background: Though genomic-level data are becoming widely available, many of the metazoan species sequenced are laboratory systems whose natural history is not well documented. In contrast, the wide array of species with very well-characterized natural history have, until recently, lacked genomics tools. It is now possible to address significant evolutionary genomics questions by applying high-throughput sequencing to discover the majority of genes for ecologically tractable species, and by subsequently developing microarray platforms from which to investigate gene regulatory networks that function in natural systems. We used GS-FLX Titanium Sequencing (Roche/454-Sequencing) of two normalized libraries of pooled RNA samples to characterize a transcriptome of the dark-eyed junco (Junco hyemalis), a North American sparrow that is a classically studied species in the fields of photoperiodism, speciation, and hormone-mediated behavior.Results: From a broad pool of RNA sampled from tissues throughout the body of a male and a female junco, we sequenced a total of 434 million nucleotides from 1.17 million reads that were assembled de novo into 31,379 putative transcripts representing 22,765 gene sets covering 35.8 million nucleotides with 12-fold average depth of coverage. Annotation of roughly half of the putative genes was accomplished using sequence similarity, and expression was confirmed for the majority with a preliminary microarray analysis. Of 716 core bilaterian genes, 646 (90 %) were recovered within our characterized gene set. Gene Ontology, orthoDB orthology groups, and KEGG Pathway annotation provide further functional information about the sequences, and 25,781 potential SNPs were identified.Conclusions: The extensive sequence information returned by this effort adds to the growing store of genomic data on diverse species. The extent of coverage and annotation achieved and confirmation of expression, show that transcriptome sequencing provides useful information for ecological model systems that have historically lacked genomic tools. The junco-specific microarray developed here is allowing investigations of gene expression responses to environmental and hormonal manipulations - extending the historic work on natural history and hormone-mediated phenotypes in this system.
KW - 454 titanium cDNA sequencing
KW - Aves
KW - Junco
KW - Microarray
KW - Pyrosequencing
KW - Single nucleotide polymorphism
KW - Transcriptome
UR - http://www.scopus.com/inward/record.url?scp=84863510246&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863510246&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-13-305
DO - 10.1186/1471-2164-13-305
M3 - Article
C2 - 22776250
AN - SCOPUS:84863510246
SN - 1471-2164
VL - 13
JO - BMC genomics
JF - BMC genomics
IS - 1
M1 - 305
ER -