Cytotoxicity and DNA Damage Caused by the Azoxy Metabolites of Procarbazine in L1210 Tumor Cells

John M. Erikson, Donald J. Tweedie, Jonathan M. Ducore, Russell A. Prough

Research output: Contribution to journalArticle

31 Scopus citations

Abstract

Procarbazine, a chemotherapeutic hydrazine, is thought to be metabolized to an alkylating species similar to methyl carbonium ion by multistep reactions involving cytochrome P-450, monoamine oxidase, and cytosolic enzymes. The DNA-damaging and cytotoxic potential of procarbazine and its metabolites in murine L1 210 leukemia tumor cells in vitro was determined using alkaline elution techniques and extrapolation of growth curves. Neither procarbazine nor any of the chemical degradation products (except for the aldehyde derivative at high concentrations) caused significant amounts of DNA strand breakage. The primary enzymatic oxidation product, azo-procarbazine, did not produce strand breakage. However, exposure of the cells to either of the two isomers of azoxy-procarbazine led to significant DNA damage and cytotoxicity. DNA damage included both single-strand breaks and alkali-labile sites. At equimolar concentrations, the azoxy 2 isomer of procarbazine caused 14 to 20 times more DNA damage than did the azoxy 1 metabolite. When cell growth is expressed as percentage survival of L1210 cells, the azoxy 2 isomer was approximately 7-fold more toxic than the azoxy 1 metabolite. The other metabolites tested showed little or no cytotoxicity. L1 210 cells were shown to contain little or no cytochrome P-450 or monoamine oxidase activity, which may account for the lack of toxicity of the parent drug or the primary oxidative metabolite, azo-PCZ, to these cells. The conversion of procarbazine to the azoxy-procarbazine isomers in vivo must occur in cells which contain these enzymes, such as liver. However, the azoxy isomers of procarbazine were metabolized in L1 210 cells, presumably leading to the DNA or cytotoxic damage observed.

Original languageEnglish (US)
Pages (from-to)127-133
Number of pages7
JournalCancer Research
Volume49
Issue number1
Publication statusPublished - Jan 1 1989

    Fingerprint

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this