TY - JOUR
T1 - Cyclic adenosine 3′,5′-monophosphate inhibits insulin-like growth factor I gene expression in rat glioma cell lines
T2 - Evidence for regulation of transcription and messenger ribonucleic acid stability
AU - Wang, Lai
AU - Adamo, Martin L.
PY - 2001
Y1 - 2001
N2 - cAMP inhibits growth and stimulates differentiation in glioma cells. We examined the effect of cAMP on insulin-like growth factor I (IGF-I) gene expression in the C6 cell line, a rat glioma cell line previously reported to grow in response to autocrine IGF-I. cAMP potently inhibited IGF-I messenger RNA (mRNA) and peptide secretion in C6 cells, associated with an attenuation of DNA synthesis. Exogenous IGF-I peptide at least partially prevented the inhibition of DNA synthesis, suggesting that the reduction in IGF-I biosynthesis may contribute to the inhibitory effect of cAMP on C6 cell growth. cAMP also inhibited IGF-I mRNA in rat RG2 glioma cells, but not in three other nonglioma tumor cell lines. The nuclear IGF-I pre-mRNA level and the half-life of mature IGF-I mRNA were both reduced by cAMP in C6 cells, suggesting effects on gene transcription and mRNA stability. However, cAMP had no effect on the activities of IGF-I exon 1 promoter-luciferase constructs. Protein synthesis inhibition partially reduced the inhibition of IGF-I mRNA by cAMP. Inhibition of cAMP-activated protein kinase A activity by H89 did not alter the inhibition of IGF-I gene expression in response to cAMP, suggesting that protein kinase A does not mediate the cAMP inhibitory effect on IGF-I gene expression.
AB - cAMP inhibits growth and stimulates differentiation in glioma cells. We examined the effect of cAMP on insulin-like growth factor I (IGF-I) gene expression in the C6 cell line, a rat glioma cell line previously reported to grow in response to autocrine IGF-I. cAMP potently inhibited IGF-I messenger RNA (mRNA) and peptide secretion in C6 cells, associated with an attenuation of DNA synthesis. Exogenous IGF-I peptide at least partially prevented the inhibition of DNA synthesis, suggesting that the reduction in IGF-I biosynthesis may contribute to the inhibitory effect of cAMP on C6 cell growth. cAMP also inhibited IGF-I mRNA in rat RG2 glioma cells, but not in three other nonglioma tumor cell lines. The nuclear IGF-I pre-mRNA level and the half-life of mature IGF-I mRNA were both reduced by cAMP in C6 cells, suggesting effects on gene transcription and mRNA stability. However, cAMP had no effect on the activities of IGF-I exon 1 promoter-luciferase constructs. Protein synthesis inhibition partially reduced the inhibition of IGF-I mRNA by cAMP. Inhibition of cAMP-activated protein kinase A activity by H89 did not alter the inhibition of IGF-I gene expression in response to cAMP, suggesting that protein kinase A does not mediate the cAMP inhibitory effect on IGF-I gene expression.
UR - http://www.scopus.com/inward/record.url?scp=0034988823&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034988823&partnerID=8YFLogxK
U2 - 10.1210/endo.142.7.8224
DO - 10.1210/endo.142.7.8224
M3 - Article
C2 - 11416026
AN - SCOPUS:0034988823
SN - 0013-7227
VL - 142
SP - 3041
EP - 3050
JO - Endocrinology
JF - Endocrinology
IS - 7
ER -