Construct Validity in Health Behavior Research: Interpreting Latent Variable Models Involving Self-Report and Objective Measures

Raymond F. Palmer, John W. Graham, Bonnie Taylor, James Tatterson

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Latent variable models assess the common variance across multiple indicators of a specific construct and are often used when measurement error may bias parameter estimates. However, care must be taken when interpreting the meaning of the latent construct when using item indicators that come from different measurement domains (e.g., self-report and biochemical indicators of smoking). Utilizing simulated data, we demonstrate that even though a model may be considered to have a "good fit" based on conventional criteria, data interpretation may be misleading or erroneous if precautions are not taken when specifying residual covariances. These findings have important implications for health-related research. Whenever different kinds of data are used to define latent variables in a health domain, exactly what items are used, and what biases may be present can affect, sometimes dramatically, (a) the definition of the latent variables and (b) the effects of the latent variables on other variables of interest.

Original languageEnglish (US)
Pages (from-to)525-550
Number of pages26
JournalJournal of Behavioral Medicine
Volume25
Issue number6
DOIs
StatePublished - Dec 2002

Keywords

  • Bias
  • Construct validity
  • Latent variable
  • Self-report
  • Simulation

ASJC Scopus subject areas

  • Psychiatry and Mental health
  • General Psychology

Fingerprint

Dive into the research topics of 'Construct Validity in Health Behavior Research: Interpreting Latent Variable Models Involving Self-Report and Objective Measures'. Together they form a unique fingerprint.

Cite this