Combining efficient hand-crafted features with learned filters for fast and accurate corneal nerve fibre centreline detection

Roberto Annunziata, Ahmad Kheirkhah, Pedram Hamrah, Emanuele Trucco

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

We propose a new approach to corneal nerve fibre centreline detection for in vivo confocal microscopy images. Relying on a combination of efficient hand-crafted features and learned filters, our method offers an excellent compromise between accuracy and running time. Unlike previous solutions using sparse coding to learn small filter banks, we employ K-means to efficiently learn the high amount of filters needed to cope with the multiple challenges involved, e.g., low contrast and resolution, non-uniform illumination, tortuosity and confounding non-target structures. The use of K-means for dictionary learning allows us to learn banks of 100 filters in less than 30 seconds compared to several days needed when using sparse coding. Experimental results using a dataset including 100 images show that our approach outperforms significantly state-of-the-art methods in terms of precision-recall curves.

Original languageEnglish (US)
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5655-5658
Number of pages4
ISBN (Electronic)9781424492718
DOIs
StatePublished - Nov 4 2015
Externally publishedYes
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: Aug 25 2015Aug 29 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Conference

Conference37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
CountryItaly
CityMilan
Period8/25/158/29/15

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Combining efficient hand-crafted features with learned filters for fast and accurate corneal nerve fibre centreline detection'. Together they form a unique fingerprint.

  • Cite this

    Annunziata, R., Kheirkhah, A., Hamrah, P., & Trucco, E. (2015). Combining efficient hand-crafted features with learned filters for fast and accurate corneal nerve fibre centreline detection. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 (pp. 5655-5658). [7319675] (Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; Vol. 2015-November). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2015.7319675