TY - JOUR
T1 - Co-transfection with the osteogenic protein (OP)-1 gene and the insulin-like growth factor (IGF)-I gene enhanced osteoblastic cell differentiation
AU - Yeh, Lee Chuan C.
AU - Lee, John C
PY - 2006/1
Y1 - 2006/1
N2 - Previous studies from this laboratory showed that the action of Osteogenic Protein-1 (OP-1, BMP-7) on osteoblastic cell differentiation could be enhanced by other protein factors, such as Insulin-like Growth Factor (IGF)-I. In the present study, we examined the effects of co-transfection with a combination of the OP-1 and the IGF-I gene on osteoblastic cell differentiation. The results first showed that fetal rat calvaria (FRC) cells transfected with the OP-1 gene under the control of the cytomegalovirus (CMV) promoter showed substantial production of the OP-1 protein. Transfected FRC cells also showed a DNA concentration-dependent increase in alkaline phosphatase (AP) activity, an osteoblastic cell differentiation marker. Von Kossa-positive nodules, a hallmark of bone formation in long-term cultures of bone-derived cells, were also observed in the transfected cells after 26 days in culture, whereas none were observed in control cells. Co-transfection of FRC cells with the combination of the OP-1 and the IGF-I gene resulted in a synergistic stimulation of AP activity. The increase was DNA dose-dependent. The current data show that transfection of OP-1 gene into osteoblastic cells stimulates osteoblastic cell differentiation in vitro. The study further demonstrates the feasibility of employing gene transfer of a second gene in combination with an OP-1 vector to synergistically enhance OP-1 activity.
AB - Previous studies from this laboratory showed that the action of Osteogenic Protein-1 (OP-1, BMP-7) on osteoblastic cell differentiation could be enhanced by other protein factors, such as Insulin-like Growth Factor (IGF)-I. In the present study, we examined the effects of co-transfection with a combination of the OP-1 and the IGF-I gene on osteoblastic cell differentiation. The results first showed that fetal rat calvaria (FRC) cells transfected with the OP-1 gene under the control of the cytomegalovirus (CMV) promoter showed substantial production of the OP-1 protein. Transfected FRC cells also showed a DNA concentration-dependent increase in alkaline phosphatase (AP) activity, an osteoblastic cell differentiation marker. Von Kossa-positive nodules, a hallmark of bone formation in long-term cultures of bone-derived cells, were also observed in the transfected cells after 26 days in culture, whereas none were observed in control cells. Co-transfection of FRC cells with the combination of the OP-1 and the IGF-I gene resulted in a synergistic stimulation of AP activity. The increase was DNA dose-dependent. The current data show that transfection of OP-1 gene into osteoblastic cells stimulates osteoblastic cell differentiation in vitro. The study further demonstrates the feasibility of employing gene transfer of a second gene in combination with an OP-1 vector to synergistically enhance OP-1 activity.
KW - Bone morphogenetic protein
KW - Cell differentiation
KW - Co-expression
KW - IGF-I
KW - Osteoblast
KW - Osteogenic protein-1
KW - Synergy
UR - http://www.scopus.com/inward/record.url?scp=32144438313&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=32144438313&partnerID=8YFLogxK
U2 - 10.1016/j.bbamcr.2005.11.001
DO - 10.1016/j.bbamcr.2005.11.001
M3 - Article
C2 - 16364466
AN - SCOPUS:32144438313
SN - 0167-4889
VL - 1763
SP - 57
EP - 63
JO - Biochimica et Biophysica Acta - Molecular Cell Research
JF - Biochimica et Biophysica Acta - Molecular Cell Research
IS - 1
ER -