Chemically self-assembled antibody nanostructures as potential drug carriers

Adrian Fegan, Sidath C. Kumarapperuma, Carston R. Wagner

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Chemically self-assembled antibody nanorings (CSANs) displaying multiple copies of single-chain variable fragments can be prepared from dihydrofolate reductase (DHFR) fusion proteins and bis-methotrexate (bisMTX). We have designed and synthesized a bisMTX chemical dimerizer (bisMTX-NH2) that contains a third linker arm that can be conjugated to fluorophores, radiolabels, and drugs. Monovalent, divalent, and higher-order AntiCD3 CSANs were assembled with a fluorescein isothiocyanate (FITC)-labeled bis-methotrexate ligand (bisMTX-FITC) and found to undergo rapid internalization and trafficking by HPB-MLT, a CD3+ T-leukemia cell line, to the early and late endosome and lysosome. Because the fluorescence of bisMTX-FITC when incorporated into CSANs was found to be significantly greater than that of the free ligand, the stability of the endocytosed AntiCD3 CSANs could be monitored. The internalized CSANs were found to be stable for several hours, while treatment with the nontoxic DHFR inhibitor trimethoprim resulted in a rapid loss (>80%) of cellular fluorescence within minutes, consistent with efficient intracellular disassembly of the nanorings. Over longer time periods (24 h), cellular fluorescence decreased by 75-90%, regardless of whether cells had been treated with DMSO or trimethoprim. Although bisMTX is a potent inhibitor of DHFR, it was found to be nontoxic (GI50 > 20 μM) to HPB-MLT cells. In contrast, AntiCD3 CSANs prepared with bisMTX were found to be at least 13-fold more cytotoxic (GI50 = 0.5-1.5 μM) than bisMTX at 72 h. Consistent with our findings from CSAN stability studies, no increase in cytotoxicity was observed upon treatment with trimethoprim. Taken together, our results suggest that cell receptor targeting CSANs prepared with trifunctional bisMTX could be used as potential tissue selective drug carriers.

Original languageEnglish (US)
Pages (from-to)3218-3227
Number of pages10
JournalMolecular Pharmaceutics
Volume9
Issue number11
DOIs
StatePublished - Nov 5 2012
Externally publishedYes

Keywords

  • antibody
  • cancer
  • drug delivery
  • nanotechnology

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery

Fingerprint Dive into the research topics of 'Chemically self-assembled antibody nanostructures as potential drug carriers'. Together they form a unique fingerprint.

Cite this