TY - JOUR
T1 - Characterization of serotonin and N-acetylserotonin systems in the human epidermis and skin cells
AU - Slominski, Andrzej T.
AU - Kim, Tae Kang
AU - Kleszczyński, Konrad
AU - Semak, Igor
AU - Janjetovic, Zorica
AU - Sweatman, Trevor
AU - Skobowiat, Cezary
AU - Steketee, Jeffery D.
AU - Lin, Zongtao
AU - Postlethwaite, Arnold
AU - Li, Wei
AU - Reiter, Russel J.
AU - Tobin, Desmond J.
N1 - Publisher Copyright:
© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Tryptophan hydroxylase (TPH) activity was detected in cultured epidermal melanocytes and dermal fibroblasts with respective Km of 5.08 and 2.83 mM and Vmax of 80.5 and 108.0 µmol/min. Low but detectable TPH activity was also seen in cultured epidermal keratinocytes. Serotonin and/or its metabolite and precursor to melatonin, N-acetylserotonin (NAS), were identified by LC/MS in human epidermis and serum. Endogenous epidermal levels were 113.18 ± 13.34 and 43.41 ± 12.45 ng/mg protein for serotonin (n = 8/8) and NAS (n = 10/13), respectively. Their production was independent of race, gender, and age. NAS was also detected in human serum (n = 13/13) at a concentration 2.44 ± 0.45 ng/mL, while corresponding serotonin levels were 295.33 ± 17.17 ng/mL (n = 13/13). While there were no differences in serum serotonin levels, serum NAS levels were slightly higher in females. Immunocytochemistry studies showed localization of serotonin to epidermal and follicular keratinocytes, eccrine glands, mast cells, and dermal fibrocytes. Endogenous production of serotonin in cultured melanocytes, keratinocytes, and dermal fibroblasts was modulated by UVB. In conclusion, serotonin and NAS are produced endogenously in the epidermal, dermal, and adnexal compartments of human skin and in cultured skin cells. NAS is also detectable in human serum. Both serotonin and NAS inhibited melanogenesis in human melanotic melanoma at concentrations of 10−4-10−3 M. They also inhibited growth of melanocytes. Melanoma cells were resistant to NAS inhibition, while serotonin inhibited cell growth only at 10−3 M. In summary, we characterized a serotonin-NAS system in human skin that is a part of local neuroendocrine system regulating skin homeostasis.
AB - Tryptophan hydroxylase (TPH) activity was detected in cultured epidermal melanocytes and dermal fibroblasts with respective Km of 5.08 and 2.83 mM and Vmax of 80.5 and 108.0 µmol/min. Low but detectable TPH activity was also seen in cultured epidermal keratinocytes. Serotonin and/or its metabolite and precursor to melatonin, N-acetylserotonin (NAS), were identified by LC/MS in human epidermis and serum. Endogenous epidermal levels were 113.18 ± 13.34 and 43.41 ± 12.45 ng/mg protein for serotonin (n = 8/8) and NAS (n = 10/13), respectively. Their production was independent of race, gender, and age. NAS was also detected in human serum (n = 13/13) at a concentration 2.44 ± 0.45 ng/mL, while corresponding serotonin levels were 295.33 ± 17.17 ng/mL (n = 13/13). While there were no differences in serum serotonin levels, serum NAS levels were slightly higher in females. Immunocytochemistry studies showed localization of serotonin to epidermal and follicular keratinocytes, eccrine glands, mast cells, and dermal fibrocytes. Endogenous production of serotonin in cultured melanocytes, keratinocytes, and dermal fibroblasts was modulated by UVB. In conclusion, serotonin and NAS are produced endogenously in the epidermal, dermal, and adnexal compartments of human skin and in cultured skin cells. NAS is also detectable in human serum. Both serotonin and NAS inhibited melanogenesis in human melanotic melanoma at concentrations of 10−4-10−3 M. They also inhibited growth of melanocytes. Melanoma cells were resistant to NAS inhibition, while serotonin inhibited cell growth only at 10−3 M. In summary, we characterized a serotonin-NAS system in human skin that is a part of local neuroendocrine system regulating skin homeostasis.
KW - N-acetylserotonin
KW - epidermis
KW - serotonin
KW - skin cells
UR - http://www.scopus.com/inward/record.url?scp=85076880380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076880380&partnerID=8YFLogxK
U2 - 10.1111/jpi.12626
DO - 10.1111/jpi.12626
M3 - Article
C2 - 31770455
AN - SCOPUS:85076880380
SN - 0742-3098
VL - 68
JO - Journal of pineal research
JF - Journal of pineal research
IS - 2
M1 - e12626
ER -