Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC)

F. C.P. Du Plessis, A. Leal, S. Stathakis, W. Xiong, C. M. Ma

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


A study is presented that characterizes megavoltage electron beams delivered through an existing double-focused photon multi-leaf collimator (pMLC) using film measurements in a solid water phantom. Machine output stability and linearity were evaluated as well as the effect of source-to-surface distance (SSD) and field size on the penumbra for electron energies between 6 and 18 MeV over an SSD range of 60-100 cm. Penumbra variations as a function of field size, depth of measurement and the influence of the jaws were also studied. Field abutment, field flatness and target coverage for segmented beams were also addressed. The measured field size for electrons transported through the pMLC was the same as that for an x-ray beam up to SSDs of 70 cm. At larger SSD, the lower energy electron fields deviated from the projected field. Penumbra data indicated that 60 cm SSD was the most favourable treatment distance. Backprojection of P20-80 penumbra data yielded a virtual source position located at 98.9 cm from the surface for 18 MeV electrons. For 6 MeV electrons, the virtual source position was at a distance of 82.6 cm. Penumbra values were smaller for small beam slits and reached a near-constant value for field widths larger than 5 cm. The influence of the jaws had a small effect on the penumbra. The R90 values ranged from 1.4 to 4.8 cm between 6 and 21 MeV as measured at 60 cm SSD for a 9 × 9 cm2 field. Uniformity and penumbra improvement could be demonstrated using weighted abutted fields especially useful for small segments. No detectable electron leakage through the pMLC was observed. Bremsstrahlung measurements taken at 60 cm SSD for a 9 × 9 cm2 field as shaped by the pMLC compared within 1% to bremsstrahlung measurements taken at 100 cm SSD for a 10 × 10 cm 2 electron applicator field at 100 cm SSD.

Original languageEnglish (US)
Pages (from-to)2113-2129
Number of pages17
JournalPhysics in Medicine and Biology
Issue number8
StatePublished - Apr 21 2006
Externally publishedYes

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC)'. Together they form a unique fingerprint.

Cite this