Chapter 13 Phosphorylation of IRS Proteins. Yin-Yang Regulation of Insulin Signaling

Xiao Jian Sun, Feng Liu

Research output: Chapter in Book/Report/Conference proceedingChapter

40 Scopus citations


Growing evidence reveals that insulin signal pathway is not static, but is rather a dynamic, flexible, and fed in by negative (Yin) and positive (Yang) regulation in response to environmental changes. Normal insulin response reflects the balance between Yin and Yang regulation acting upon insulin signaling pathway. Conceivably, imbalance between the Yin and Yang results in abnormal insulin sensitivity such as insulin resistance. IRS-proteins are insulin receptor substrates that mediate insulin signaling via multiple tyrosyl phosphorylations. However, they are also substrates for many serine/threonine kinases downstream of other signaling network and become serine phosphorylated in response to various conditions such as inflammation, stress and over nutrients. The serine phosphorylation of IRS-proteins alters the capacities of IRS-proteins to be phosphorylated on tyrosyl, therefore, able to mediate insulin signaling. The unique structure of IRS-proteins render them idea molecules to fulfill the task to sense the environmental cues and integrate them into insulin sensitivity through serine/threonine phosphorylation. This review intends to summarize the role of IRS-proteins in insulin signaling with focuses on the role of Yin and Yang regulation of insulin signaling pathway. Understanding the dynamic of these complicated regulation net work not only provide us a complete picture of what happens in the normal conditions, but also pathaphysiological conditions such as obesity and insulin resistance.

Original languageEnglish (US)
Title of host publicationVitamins and Hormones
Number of pages37
StatePublished - Mar 5 2009

Publication series

NameVitamins and Hormones
ISSN (Print)0083-6729

ASJC Scopus subject areas

  • Physiology
  • Endocrinology


Dive into the research topics of 'Chapter 13 Phosphorylation of IRS Proteins. Yin-Yang Regulation of Insulin Signaling'. Together they form a unique fingerprint.

Cite this