Changes in gene expression during senescence of adrenocortical cells in culture

Peter J. Hornsby, Charles Y. Cheng, Deepak S. Lala, Sepehr Steve Maghsoudlou, Satyanarayana G. Raju, Lianqing Yang

Research output: Contribution to journalArticle

21 Scopus citations

Abstract

Bovine adrenocortical cells undergo a process in which expression of steroid hydroxylases is lost progressively as a function of population doubling level (PDL) in culture. Each cytochrome P450 shows a characteristic rate of loss of expression as a function of PDL (in order of rates of loss: CYP11B > CYP21 > CYP17 > CYP11A). CYP11B and CYP21 require insulin-like growth factor I as well as cyclic AMP; these are the only factors required for induction in the primary culture. Middle- and later passage cells do not express CYP11B and CYP21 under the same conditions, but will do so when cells are grown in extracellular matrix Matrigel. In late-passage cells neither CYP17, CYP21, nor CYP11B are expressed, even in the presence of Matrigel; only CYP11A is expressed in late-passage cultures. When the different environmental factors required for induction of CYP11B and CYP21 are taken into account, induction of these genes disappears with the same kinetics as previously shown for CYP17 as a function of PDL. The primary cause of the loss of expression of these genes is likely to be a phenotypic switching event similar to that previously demonstrated for CYP17 by in situ hybridization. The mechanism of phenotypic switching is unknown. However, one HpaII site at -2.3 kb of CYP17 was methylated in the bovine adrenal cortex in vivo but showed rapid and complete demethylation when adrenocortical cells were placed in culture. This indicates a unique, reproducible, environmentally determined change in methylation, with as yet undetermined consequences. However, data from reporter constructs suggest that phenotypic switching does not result from a simple loss of regulatory factors that act within 2.5 kb of the promoter. Previous data suggested that SV40 T antigen may affect phenotypic switching, and thus that SV40 may be useful for the derivation of functional adrenocortical cell lines. Adaptation of methods previously used for bovine cells to human adrenocortical cells to produce SV40 T antigen-transfected clones yielded data indicating preservation of essential aspects of the human adrenocortical cell differentiated phenotype.

Original languageEnglish (US)
Pages (from-to)951-960
Number of pages10
JournalJournal of Steroid Biochemistry and Molecular Biology
Volume43
Issue number8
DOIs
StatePublished - Dec 1992
Externally publishedYes

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Endocrinology
  • Clinical Biochemistry
  • Cell Biology

Fingerprint Dive into the research topics of 'Changes in gene expression during senescence of adrenocortical cells in culture'. Together they form a unique fingerprint.

  • Cite this