TY - JOUR
T1 - Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase
AU - Nauseef, W. M.
AU - McCormick, S. J.
AU - Clark, R. A.
PY - 1995
Y1 - 1995
N2 - Myeloperoxidase (MPO), a lysosomal heme protein found exclusively in neutrophils and monocytes, is necessary for efficient oxygen-dependent microbicidal activity. Acquisition of heme by the heme-free MPO precursor apopro-MPO appears to be a prerequisite for its subsequent proteolytic processing and advancement along the biosynthetic pathway to mature MPO. We present data indicating that calreticulin (CRT), a high capacity calcium- binding protein residing in the lumen of the endoplasmic reticulum of a wide variety of cells, interacts specifically with fully glycosylated apopro-MPO. Biosynthetically radiolabeled CRT (60 kDa) and apopro-MPO (90 kDa) were coprecipitated from PLB 985 cells by monospecific antiserum against CRT when the immunoprecipitations were performed either under nondenaturing conditions or following reversible cross-linking. Nonglycosylated MPO precursors synthesized in the presence of tunicamycin did not interact with CRT. The CRT-apopro-MPO interaction was restricted to an early phase of MPO biosynthesis, and CRT did not interact with the later appearing, heme- containing species of MPO, i.e. pro-MPO or the heavy subunit of mature MPO. These data show that CRT participates in the post-translational processing of MPO, perhaps by maintaining apopro-MPO in a conformation competent to accommodate insertion of the heme group. In this general way, CRT shares certain functional properties with the structurally homologous transmembrane calcium-binding endoplasmic reticulum protein calnexin. Both interact with glycosylated biosynthetic precursors of proteins selectively expressed in specialized cells.
AB - Myeloperoxidase (MPO), a lysosomal heme protein found exclusively in neutrophils and monocytes, is necessary for efficient oxygen-dependent microbicidal activity. Acquisition of heme by the heme-free MPO precursor apopro-MPO appears to be a prerequisite for its subsequent proteolytic processing and advancement along the biosynthetic pathway to mature MPO. We present data indicating that calreticulin (CRT), a high capacity calcium- binding protein residing in the lumen of the endoplasmic reticulum of a wide variety of cells, interacts specifically with fully glycosylated apopro-MPO. Biosynthetically radiolabeled CRT (60 kDa) and apopro-MPO (90 kDa) were coprecipitated from PLB 985 cells by monospecific antiserum against CRT when the immunoprecipitations were performed either under nondenaturing conditions or following reversible cross-linking. Nonglycosylated MPO precursors synthesized in the presence of tunicamycin did not interact with CRT. The CRT-apopro-MPO interaction was restricted to an early phase of MPO biosynthesis, and CRT did not interact with the later appearing, heme- containing species of MPO, i.e. pro-MPO or the heavy subunit of mature MPO. These data show that CRT participates in the post-translational processing of MPO, perhaps by maintaining apopro-MPO in a conformation competent to accommodate insertion of the heme group. In this general way, CRT shares certain functional properties with the structurally homologous transmembrane calcium-binding endoplasmic reticulum protein calnexin. Both interact with glycosylated biosynthetic precursors of proteins selectively expressed in specialized cells.
UR - http://www.scopus.com/inward/record.url?scp=0028964421&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028964421&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.9.4741
DO - 10.1074/jbc.270.9.4741
M3 - Article
C2 - 7876246
AN - SCOPUS:0028964421
VL - 270
SP - 4741
EP - 4747
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 9
ER -