Abstract
Calmodulin regulates numerous fundamental metabolic pathways by binding to and modulating diverse target proteins. In this study, calmodulin-binding proteins were isolated from normal (Hs578Bst) and malignant (MCF-7) human breast cell lines with calmodulin-Sepharose and analyzed by SDS- polyacrylamide gel electrophoresis. A protein that migrated at approximately 190 kDa bound to calmodulin in the presence of Ca2+ and was the only calmodulin-binding protein detected in the absence of Ca2+. This 190-kDa protein was identified as IQGAP1 by nanoelectrospray mass spectrometry and collision-induced dissociation tandem mass spectrometry. IQGAP1 coimmunoprecipitated with calmodulin from lysates of MCF-7 cells. Moreover, overlay with 125I-calmodulin confirmed that IQGAP1 binds directly to calmodulin. Analysis of the functional effects of the interaction revealed that Ca2+/calmodulin disrupted the binding of purified IQGAP1 to the Ras- related protein Cdc42 in a concentration-dependent manner. These data clearly identify IQGAP1 as the predominant calmodulin-binding protein in Ca2+-free breast cell lysates and reveal that calmodulin modulates the interaction between IQGAP1 and Cdc42.
Original language | English (US) |
---|---|
Pages (from-to) | 15419-15425 |
Number of pages | 7 |
Journal | Journal of Biological Chemistry |
Volume | 272 |
Issue number | 24 |
DOIs | |
State | Published - Jun 13 1997 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology