Brain correlates of stuttering and syllable production: A PET performance-correlation analysis

Peter T. Fox, Roger J. Ingham, Janis C. Ingham, Frank Zamarripa, Jin Hu Xiong, Jack L. Lancaster

Research output: Contribution to journalArticlepeer-review

195 Scopus citations

Abstract

To distinguish the neural systems of normal speech from those of stuttering, PET images of brain blood flow were probed (correlated voxel-wise) with per-trial speech-behaviour scores obtained during PET imaging. Two cohorts were studied: 10 right-handed men who stuttered and 10 right-handed, age- and sex-matched non-stuttering controls. Ninety PET blood flow images were obtained in each cohort (nine per subject as three trials of each of three conditions) from which r-value statistical parametric images (SPI{r}) were computed. Brain correlates of stutter rate and syllable rate showed striking differences in both laterality and sign (i.e. positive or negative correlations). Stutter-rate correlates, both positive and negative, were strongly lateralized to the right cerebral and left cerebellar hemispheres. Syllable correlates in both cohorts were bilateral, with a bias towards the left cerebral and right cerebellar hemispheres, in keeping with the left-cerebral dominance for language and motor skills typical of right-handed subjects. For both stutters and syllables, the brain regions that were correlated positively were those of speech production: the mouth representation in the primary motor cortex; the supplementary motor area; the inferior lateral premotor cortex (Broca's area); the anterior insula; and the cerebellum. The principal difference between syllable-rate and stutter-rate positive correlates was hemispheric laterality. A notable exception to this rule was that cerebellar positive correlates for syllable rate were far more extensive in the stuttering cohort than in the control cohort, which suggests a specific role for the cerebellum in enabling fluent utterances in persons who stutter. Stutters were negatively correlated with right-cerebral regions (superior and middle temporal gyrus) associated with auditory perception and processing, regions which were positively correlated with syllables in both the stuttering and control cohorts. These findings support long-held theories that the brain correlates of stuttering are the speech-motor regions of the non-dominant (right) cerebral hemisphere, and extend this theory to include the non-dominant (left) cerebellar hemisphere. The present findings also indicate a specific role of the cerebellum in the fluent utterances of persons who stutter. Support is also offered for theories that implicate auditory processing problems in stuttering.

Original languageEnglish (US)
Pages (from-to)1985-2004
Number of pages20
JournalBrain
Volume123
Issue number10
DOIs
StatePublished - 2000

Keywords

  • Oral reading
  • PET
  • Performance-correlation analysis
  • Speech
  • Stuttering

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint Dive into the research topics of 'Brain correlates of stuttering and syllable production: A PET performance-correlation analysis'. Together they form a unique fingerprint.

Cite this