TY - JOUR
T1 - Bone-Derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms
AU - Duran, Jason M.
AU - Makarewich, Catherine A.
AU - Sharp, Thomas E.
AU - Starosta, Timothy
AU - Zhu, Fang
AU - Hoffman, Nicholas E.
AU - Chiba, Yumi
AU - Madesh, Muniswamy
AU - Berretta, Remus M.
AU - Kubo, Hajime
AU - Houser, Steven R.
PY - 2013/8/16
Y1 - 2013/8/16
N2 - RATIONALE:: Autologous bone marrow-derived or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials, but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is the key toward improving clinical outcomes. OBJECTIVE:: To determine the mechanism by which novel bone-derived stem cells support the injured heart. METHODS AND RESULTS:: Cortical bone-derived stem cells (CBSCs) and cardiac-derived stem cells were isolated from enhanced green fluorescent protein (EGFP+) transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis, and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction with injection of CBSCs (n=67), cardiac-derived stem cells (n=36), or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor), and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to cardiac-derived stem cells- or saline-treated myocardial infarction controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle, and endothelial cells could be identified in CBSC-treated, but not in cardiac-derived stem cells-treated, animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. CONCLUSIONS:: CBSCs improve survival, cardiac function, and attenuate remodeling through the following 2 mechanisms: (1) secretion of proangiogenic factors that stimulate endogenous neovascularization, and (2) differentiation into functional adult myocytes and vascular cells.
AB - RATIONALE:: Autologous bone marrow-derived or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials, but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is the key toward improving clinical outcomes. OBJECTIVE:: To determine the mechanism by which novel bone-derived stem cells support the injured heart. METHODS AND RESULTS:: Cortical bone-derived stem cells (CBSCs) and cardiac-derived stem cells were isolated from enhanced green fluorescent protein (EGFP+) transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis, and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction with injection of CBSCs (n=67), cardiac-derived stem cells (n=36), or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor), and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to cardiac-derived stem cells- or saline-treated myocardial infarction controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle, and endothelial cells could be identified in CBSC-treated, but not in cardiac-derived stem cells-treated, animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. CONCLUSIONS:: CBSCs improve survival, cardiac function, and attenuate remodeling through the following 2 mechanisms: (1) secretion of proangiogenic factors that stimulate endogenous neovascularization, and (2) differentiation into functional adult myocytes and vascular cells.
KW - differentiation
KW - myocardial infarction
KW - neovascularization
KW - paracrine communication
KW - stem cells
UR - http://www.scopus.com/inward/record.url?scp=84883445522&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883445522&partnerID=8YFLogxK
U2 - 10.1161/CIRCRESAHA.113.301202
DO - 10.1161/CIRCRESAHA.113.301202
M3 - Article
C2 - 23801066
AN - SCOPUS:84883445522
SN - 0009-7330
VL - 113
SP - 539
EP - 552
JO - Circulation research
JF - Circulation research
IS - 5
ER -