Biomechanical restoration potential of pentagalloyl glucose after arterial extracellular matrix degeneration

Sourav S. Patnaik, Senol Piskin, Narasimha Rao Pillalamarri, Gabriela Romero, G. Patricia Escobar, Eugene Sprague, Ender A. Finol

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


The objective of this study was to quantify pentagalloyl glucose (PGG) mediated biomechanical restoration of degenerated extracellular matrix (ECM). Planar biaxial tensile testing was performed for native (N), enzyme-treated (collagenase and elastase) (E), and PGG (P) treated porcine abdominal aorta specimens (n = 6 per group). An Ogden material model was fitted to the stress–strain data and finite element computational analyses of simulated native aorta and aneurysmal abdominal aorta were performed. The maximum tensile stress of the N group was higher than that in both E and P groups for both circumferential (43.78 ± 14.18 kPa vs. 10.03 ± 2.68 kPa vs. 13.85 ± 3.02 kPa; p = 0.0226) and longitudinal directions (33.89 ± 8.98 kPa vs. 9.04 ± 2.68 kPa vs. 14.69 ± 5.88 kPa; p = 0.0441). Tensile moduli in the circumferential direction was found to be in descending order as N > P > E (195.6 ± 58.72 kPa > 81.8 ± 22.76 kPa > 46.51 ± 15.04 kPa; p = 0.0314), whereas no significant differences were found in the longitudinal direction (p = 0.1607). PGG binds to the hydrophobic core of arterial tissues and the crosslinking of ECM fibers is one of the possible explanations for the recovery of biomechanical properties observed in this study. PGG is a beneficial polyphenol that can be potentially translated to clinical practice for preventing rupture of the aneurysmal arterial wall.

Original languageEnglish (US)
Article number58
Issue number3
StatePublished - Sep 2019


  • Aneurysm
  • Aorta
  • Biomechanics
  • Enzyme
  • Pentagalloyl glucose

ASJC Scopus subject areas

  • Bioengineering


Dive into the research topics of 'Biomechanical restoration potential of pentagalloyl glucose after arterial extracellular matrix degeneration'. Together they form a unique fingerprint.

Cite this